Skip to main content
Log in

Antibiofilm activity of biomolecules: gene expression study of bacterial isolates from brackish and fresh water biofouled membranes

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Membrane biofouling is a common and emerging problem, where cells get cemented and create problems in industrial process. Frequent chemical cleaning used for the treatment of biofouled membrane shortens the membrane life time and creates ‘stress’ to existing microflora to trigger more exopolysaccharides production, which becomes the principle cause of biofouling. To understand safe and environmentally feasible antifouling strategies, key biofilm forming representative bacteria isolated from brackish and fresh water biofouled membranes were subjected to natural agents, such as vanillin (0.05-0.4 mg/mL) and salicylic acid (0.1-0.7 mg/mL). Salicylic acid (0.7 mg/mL) was found to be effective against only Pseudomonas group, whereas vanillin was remarkably potent against majority of the isolates because of structural mimicking with signalling autoinducer molecules. The present study showed that vanillin served as a good quorum quencher molecule as it inhibited 90% acyl homoserine lactones production at 0.3 mg/mL concentration in biosensor Chromobacterium violaceum CV026 strain and also inhibited 70% to > 90% biofilm formation in bacterial isolates. Biofilm formation and quorum sensing inhibition activities were validated by real-time quantitative PCR gene expression analysis in key representative membrane isolates. Vanillin served as antifouling natural agent towards broad spectrum community found on membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AHL:

acyl homoserine lactone

C6 HSL:

N-hexanoyl-L-homoserine lactone

LB:

Luria-Bertani

qPCR:

quantitative PCR

QQ:

quorum quenching

QS:

quorum sensing

SA:

salicylic acid

References

  • Anand S., Singh D., Avadhanula M. & Marka S. 2014. Development and control of bacterial biofilms on dairy processing membranes. Compr. Rev. Food Sci. Food Saf. 13: 18–33.

    Article  CAS  PubMed  Google Scholar 

  • Ashhab Al. A., Herzberg M. & Gillor O. 2014. Biofouling of reverse-osmosis membranes during tertiary wastewater desalination: microbial community composition. Water Res. 50: 341–349.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Dov E., Ben-David E., Messalem R., Herzberg M. & Kushmaro A. 2015. Biofilm formation on RO membranes: the impact of seawater pretreatment. Desalination Water Treat. 57: 4741–4748.

    Article  CAS  Google Scholar 

  • Bhardwaj P., Sharma A., Sagarkar S. & Kapley A. 2015. Mapping atrazine and phenol degradation genes in Pseudomonas sp. EGD-AKN5. Biochem. Eng. J. 102: 125–134.

    Article  CAS  Google Scholar 

  • Bing W. & Anthony G. F. 2012. Microbial relevant fouling in membrane bioreactors: influencing factors, characterization, and fouling control. Membranes 2: 565–584.

    Article  CAS  Google Scholar 

  • Brackman G., Cos P., Maes L., Nelis H.J. & Coenye T. 2011. Quorum sensing inhibitors increase the susceptibility of bacterial biofilms to antibiotics in vitro and in vivo. Antimicrob. Agents Chemother. 55: 2655–2661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheong W.S., Kim S.R., Oh H.S., Lee S.H., Yeon K.M., Lee C.H. & Lee J.K. 2014. Design of quorum quenching microbial vessel to enhance cell viability for biofouling control in membrane bioreactor. J. Microbiol. Biotechnol. 24: 97–105.

    Article  CAS  PubMed  Google Scholar 

  • Choi A.H., Slamti L., Avci F.Y., Pier G.B. & Maira-Litrán T. 2009. The pgaABCD locus of Acinetobacter baumannii encodes the production of poly-β-1-6-N-acetylglucosamine, which is critical for biofilm formation. J. Bacteriol. 191: 595–5963.

    Google Scholar 

  • Choo J.H., Rukayadi Y. & Hwang J.K. 2006. Inhibition of bacterial quorum sensing by vanilla extract. Lett. Appl. Microbiol. 42: 637–641.

    CAS  PubMed  Google Scholar 

  • Cramton S.E., Gerke C., Schnell N.F., Nichols W.W. & Götz F. 1999. The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect. Immun. 67: 5427–5433.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feng L., Wu Z. & Yu X. 2012. Quorum sensing in water and wastewater treatment biofilms. J. Environ. Biol. 34: 437–444.

    Google Scholar 

  • Fitzgerald D.J., Stratford M., Gasson M.J., Ueckert J., Bos A. & Narbad A. 2004. Mode of antimicrobial action of vanillin against Escherichia coli, Lactobacillus plantarum and Listeria innocua. J. Appl. Microbiol. 97: 104–113.

    Article  CAS  PubMed  Google Scholar 

  • Gaddy J.A. & Actis L.A. 2009. Regulation of Acinetobacter baumannii biofilm formation. Future Microbiol. 4: 27–278.

    Article  Google Scholar 

  • Hendrickx A.P., van Luit- Asbroek M., Schapendonk C.M., van Wamel W.J., Braat J.C., Wijnands L.M. & Willems R.J. 2009. SgrA, a nidogen-binding LPXTG surface adhesin implicated in biofilm formation, and EcbA, a collagen binding MSCRAMM, are two novel adhesins of hospital-acquired Enterococcus faecium. Infect. Immun. 77: 5097–5106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong S.H., Hegde M., Kim J., Wang X., Jayaraman A. & Wood T.K. 2012. Synthetic quorum-sensing circuit to control con-sortial biofilm formation and dispersal in a microfluidic device. Nat. Commun. 3. 613.

    Article  PubMed  CAS  Google Scholar 

  • Huigens R.W., Richard J.J., Parise G., Ballard T.E., Zeng W., Deora R. & Melander C. 2007. Inhibition of Pseudomonas aeruginosa biofilm formation with bromoageliferin analogues. J. Am. Chem. Soc. 129: 6966–6967.

    Article  CAS  PubMed  Google Scholar 

  • Kalia V.C. & Purohit H.J. 2011. Quenching the quorum sensing system: potential antibacterial drug targets. Crit. Rev. Microbiol. 37: 121–140.

    Article  CAS  PubMed  Google Scholar 

  • Khan M., Danielsen S., Johansen K., Lorenz L., Nelson S. & Camper A. 2014. Enzymatic cleaning of biofouled thin-film composite reverse osmosis (RO) membrane operated in a biofilm membrane reactor. Biofouling 30: 15–167.

    Article  CAS  Google Scholar 

  • De Kievit T.R., Gillis R., Marx S., Brown C. & Iglewski B.H. 2001. Quorum-sensing genes in Pseudomonas aeruginosa biofilms: their role and expression patterns. Appl. Environ. Microbiol. 67: 1865–1873.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim S., Lee S., Hong S., Oh Y., Kweon J. & Kim T. 2009. Biofouling of reverse osmosis membranes: microbial quorum sensing and fouling propensity. Desalination 247: 30–315.

    Article  CAS  Google Scholar 

  • Lade H., Paul D. & Kweon H.J. 2014. Isolation and molecular characterization of biofouling bacteria and profiling of quorum sensing signal molecules from membrane bioreactor activated sludge. Int. J. Mol. Sci. 15: 2255–2273.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lagonenko L., Lagonenko A., & Evtushenkov A. 2013. Impact of salicylic acid on biofilm formation by plant pathogenic bacteria. J. Biol. Earth Sci. 3. B176–B181.

    CAS  Google Scholar 

  • Liu P., Huang Q. & Chen W. 2012. Heterologous expression of bacterial nitric oxide synthase gene: a potential biological method to control biofilm development in the environment. Can. J. Microbiol. 58: 336–344.

    Article  CAS  PubMed  Google Scholar 

  • Magin C.M., Cooper S.P. & Brennan A.B. 2010. Non-toxic antifouling strategies. Materials Today 13: 36–44.

    Article  CAS  Google Scholar 

  • Malaeb L., Le-Clech P., Vrouwenvelder J.S., Ayoub G.M. & Saikaly P.E. 2013. Do biological-based strategies hold promise to biofouling control in MBRs? Water Res. 47: 5447–5463.

    Article  CAS  PubMed  Google Scholar 

  • Marcato-Romain C.E., Pechaud Y., Paul E., Girbal-Neuhauser E. & Dossat-Létisse V. 2012. Removal of microbial multi-species biofilms from the paper industry by enzymatic treatments. Biofouling 28: 305–314.

    Article  CAS  PubMed  Google Scholar 

  • Meyer F., Paarmann D., D’Souza M., Olson R., Glass E.M., Kubal M., Paczian T., Rodriguez A., Stevens R., Wilke A., Wilkening J. & Edwards A.R. 2008. The metagenomics RAST server - a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9. 386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ngarmsak M., Delaquis P., Toivonen P., Ngarmsak T., Ooraikul B. & Mazza G. 2006. Antimicrobial activity of vanillin against spoilage microorganisms in stored fresh-cut mangoes. J. Food Protect. 69: 1724–1727.

    Article  CAS  Google Scholar 

  • Nguyen T., Roddick F. A. & Fan L. 2012. Biofouling of water treatment membranes: a review of the underlying causes, monitoring techniques and control measures. Membranes 2: 804–840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nousiainen A.O., Björklöf K., Sagarkar S., Mukherjee S., Purohit H.J., Kapley A. & Jørgensen K.S. 2001. Atrazine degradation in boreal nonagricultural subsoil and tropical agricultural soil. J. Soils Sediments 14: 1179–1188.

    Article  CAS  Google Scholar 

  • Okolie C. & Chenia H.Y. 2013. Assessment of aquatic Aeromonas spp. isolates’ susceptibility to cinnamaldehyde, vanillin, and crude Kigelia africana fruit extracts. J. World Aquacult. Soc. 44: 486–498.

    Article  CAS  Google Scholar 

  • O’Toole G.A. & Kolter R. 1998. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol. 30: 295–304.

    Article  PubMed  Google Scholar 

  • Park S.K. & Hu J.Y. 2010. Assessment of the extent of bacterial growth in reverse osmosis system for improving drinking water quality. J. Environ. Sci. Health 45: 968–977.

    Article  CAS  Google Scholar 

  • Pérez-Osorio A.C., Williamson K.S. & Franklin M.J. 2010. Heterogeneous rpoS and rhIR mRNA levels and 16. rRNA/rDNA (rRNA gene) ratios within Pseudomonas aeruginosa biofilms, sampled by laser capture microdissection. J. Bacteriol. 192: 2991–3000.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Piola R.F., Dafforn K.A. & Johnston E.L. 2009. The influence of antifouling practices on marine invasions. Biofouling 25: 63–644.

    Article  CAS  Google Scholar 

  • Ponnusamy K., Kappachery S., Thekeettle M., Song J.H. & Kweon J.H. 2013. Anti-biofouling property of vanillin on Aeromonas hydrophila initial biofilm on various membrane surfaces. World J. Microbiol. Biotechnol. 29: 1695–1703.

    Article  CAS  PubMed  Google Scholar 

  • Ponnusamy K., Paul D. & Kweon J. H. 2009. Inhibition of quorum sensing mechanism and Aeromonas hydrophila biofilm formation by vanillin. Environ. Eng. Sci. 26: 1359–1363.

    Article  CAS  Google Scholar 

  • Qureshi A., Pal S., Ghosh S., Kapley A. & Purohit H.J. 2015. Antibiofouling biomaterials. Int. J. Recent Advances Multidis. Res. 2: 0677–0684.

    Google Scholar 

  • Schmittgen T.D. & Livak K.J. 2008. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 3: 1101–1108.

    Article  CAS  PubMed  Google Scholar 

  • Tan C.H., Koh K.S., Xie C., Zhang J., Tan X.H., Lee G.P., Zhou Y., Ng W.J., Rice S.A. & Kjelleberg S. 2015. Community quorum sensing signalling and quenching: microbial granular biofilm assembly. NPJ Biofilms Microbiomes 1. 15006.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang K., Zhang Y., Yu M., Shi X., Coenye T., Bossier P. & Zhang X.H. 2013. Evaluation of a new high-throughput method for identifying quorum quenching bacteria. Sci. Rep. 3. 2935.

    Article  PubMed  PubMed Central  Google Scholar 

  • Toledo-Arana A., Valle J., Solano C., Arrizubieta M.J., Cucarella C., Lamata M. & Lasa I. 2001. The enterococcal surface protein, Esp, is involved in Enterococcus faecalis biofilm formation. Appl. Environ. Microbiol. 67: 4538–4545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vilain S., Pretorius J. M. Theron J. & Brözel V.S. 2009. DNA as an adhesin: Bacillus cereus requires extracellular DNA to form biofilms. Appl. Environ. Microbiol. 75: 2861–2868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker S.L., Hill J.E. Redman J.A. & Elimelech M. 2005. Influence of growth phase on adhesion kinetics of Escherichia coli D21g. Appl. Environ. Microbiol. 71: 309–3099.

    Google Scholar 

  • Wang J., Gao X., Wang Q., Sun H., Wang X. & Gao C. 2015. Enhanced biofouling resistance of polyethersulfone membrane surface modified with capsaicin derivative and itaconic acid. Appl. Surface Sci. 356: 467–474.

    Article  CAS  Google Scholar 

  • Wang J., Quan C., Wang X., Zhao P. & Fan S. 2011. Extraction, purification and identification of bacterial signal molecules based on N-acyl homoserine lactones. Microb. Biotechnol. 4: 479–490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weerasekara N.A., Choo K.H. & Lee C.H. 2014. Hybridization of physical cleaning and quorum quenching to minimize membrane biofouling and energy consumption in a membrane bioreactor. Water Res. 67: 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Yuan Z.C., Edlind M.P., Liu P., Saenkham P., Banta L.M., Wise A.A., Ronzone E., Binns A.N., Kerr K. & Nester E.W. 2007. The plant signal salicylic acid shuts down expression of the vir regulon and activates quormone-quenching genes in Agrobacterium. Proc. Natl. Acad. Sci. USA 104: 11790–11795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Director, CSIR-NEERI, for support and inspiration, Clean Water; Sustainable Options: 12th plan CSIR network project (ESC0306, Activity 3.4.2) for providing funds, AcSIR and DST Inspire Fellowship awarded to SP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asifa Qureshi.

Supplementary material

11756_2016_7103239_MOESM1_ESM.pdf

Antibiofilm activity of biomolecules: gene expression study of bacterial isolates from brackish and fresh water biofouled membranes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, S., Qureshi, A. & Purohit, H.J. Antibiofilm activity of biomolecules: gene expression study of bacterial isolates from brackish and fresh water biofouled membranes. Biologia 71, 239–246 (2016). https://doi.org/10.1515/biolog-2016-0045

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2016-0045

Key words

Navigation