Skip to main content

Advertisement

Log in

Studies on a better laccase-producing mutant of Fusarium incarnatum LD-3 under solid substrate tray fermentation

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Forty-seven (47) mutant strains were generated from the wild-type fungus, Fusarium incarnatum strain LD-3 after exposure to ultraviolet radiation (UV) and a further seventeen (17) mutants were generated after exposure to ethyl methane sulfonate (EMS). Amongst these, the mutant strain, identified as UC-14, was the most promising laccase producer and produced threefold more laccase than the wild strain LD-3. Solid substrate tray fermentation using wheat straw and rice bran showed a twofold increase in laccase productivity and a fivefold loss of total organic matter (TOM) by mutant UC-14 over the wild strain LD-3. The mutant strain UC-14 also showed 25% and 54% weight loss of TOM after 36 days of fermentation which was 10% higher than the wild-type LD-3. Scanning electron microscopy suggested that the delayed condidiation in mutant strain UC-14 may be responsible for better laccase production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adegoke AE, Kola QJ, Yadav A, Chandral BT (2012) Improvement of laccase production in Pluerotus pulmonarius-LAU 09 by mutation. J Microbiol Res 2:11–17

    Article  Google Scholar 

  • Akpinar M, Urek RO (2017) Induction of fumgal laccase production under solid waste bioprocessing of new agroindustrial waste and its application on dye decolorization. 3 Biotech 7(98):1–10

    Google Scholar 

  • Antecka A, Bizukojc M, Ledakowisz S (2016) Modern morphological engineering techniques for improving productivity of filamentous fungi in submerge cultures. World J Microbiol Biotechnol 32(193):1–9

    CAS  Google Scholar 

  • Arora DS, Chander M, Gill PK (2002) Involvement of lignin peroxidise, manganese peroxidise and laccase in degradation and selective ligninolysis of wheat straw. Biodeter Biodegr 50:115–120

    Article  CAS  Google Scholar 

  • Ashrafi SD, Rezaei S, Forootanfar H, Mahvi AH, Faramarzi MA (2013) The enzymatic decolorization and detoxification of synthetic dyes by the laccase from a soil-isolated ascomycete, Paraconiothyrium variabile. Int Biodeter Biodegr 85:173–181

    Article  CAS  Google Scholar 

  • Bakkiyaraj S, Arvind R, Arrivukkarasan S, Viruthagiri T (2013) Enhanced laccase production by Trametes hirusta using wheat bran under submerged fermentation. Int J ChemTech Res 5:1224–1238

    CAS  Google Scholar 

  • Balaraju K, Park K, Jahagirdar S, Kaviyarasan V (2010) Production of cellulase and laccase enzymes by Oudemansiella radicata using agro wastes under solid-state and submerged conditions. Res Biotechnol 1:21–28

    Google Scholar 

  • Basto C, Tzanov T, Cavaco-Paulo A (2007) Combined ultrasound-laccase assisted bleaching of cotton. Ultrason Sonochem 14:350–354

    Article  CAS  Google Scholar 

  • Bermek H, Gülseren I, Li K, Jung H, Temerler C (2004) The effect of fungal morphology on ligninolytic enzyme production by a recently isolated wood-degrading fungus Trichophyton ruburum LSK-27.World. J Microbiol Biotechnol 20::345–349

    Article  Google Scholar 

  • Bocking SP, Wiebe MG, Robson GD, Hansen K, Christiansen LH, Trinci AP (1995) Effect of branch frequency in Aspergillus oryzae on protein secretion and culture viscosity. Biotechnol Bioeng 65:638–648

    Article  Google Scholar 

  • Boran F, Yesilada O (2011) Enhanced production of laccase by fungi under solid substrate fermentation condition. BioResources 6:4404–4416

    CAS  Google Scholar 

  • Chhaya UC, Gupte AP (2010)) Optimization of media components for laccase production by litter dwelling fungal isolate Fusarium incarnatum LD-3. J Basic Microb 50:43–51

    Article  CAS  Google Scholar 

  • Chhaya UC, Gupte AP (2013) Effect of different cultivation conditions and inducers on the production of laccase by the litter-dwelling fungal isolate Fusarium incarnatum LD-3 under solid substrate fermentation. Ann Microbiol 63:215–223

    Article  CAS  Google Scholar 

  • Dhawan S, Lal R, Kuhad RC (2003) Ethidium bromide stimulated hyper laccase production from the bird’s nest fungus Cyathus bulleri. Lett Appl Microbiol 36:64–67

    Article  CAS  Google Scholar 

  • Dhawan S, Lal R, Hanspal M, Kuhad RC (2005) Effect of antibiotics on growth and laccase production from Cynathus bulleri and Pycnoporous cinnabarinus. Bioresour Technol 96:415–418

    Article  Google Scholar 

  • Dhillon GS, Kaur S, Brar SK, Verma M (2012) Flocculation and haze removal from crude beer using in-house produced laccase from Trametes versicolor cultured on Brewer’s spent grain. J Agric Food Chem 60:7895–7904

    Article  CAS  Google Scholar 

  • Eichlerová I, Homolka L (1999) Preparation and crossing of basidiospore-derived monokaryons—a useful tool for obtaining laccase and other ligninolytic enzyme higher-producing dikaryotic strains of Pleurotus ostreatus. Anton Leeuw Int J G 75:321–327

    Article  Google Scholar 

  • Ergun OS, Urek OR (2017) Production of ligninolytic enzymes by solid state fermentation using Pleurotus ostreatus. Ann Agrar Sci 15:273–277

    Article  Google Scholar 

  • Fackler K, Kuncinger T, Ters T, Srebotnik E (2008) Laccase-catalyzed functionalization with 4-hydroxy-3-methoxybenzylurea significantly improves internal bond of particle boards. Holzforschung 62:223–229

    Article  CAS  Google Scholar 

  • Flory AR, Requesens DV, Devaiah SP, Teoh KT, Mansfield SD, Hood EE (2013) Development of a green binder system for paper products. BMC Biotechnol 13:1–14

    Article  Google Scholar 

  • Gianfreda L, Xu F, and. Bollag JM (1999) Laccases: a useful group of oxidoreductive enzymes. Biorem J 3:1–25

    Article  CAS  Google Scholar 

  • Gupta R, Mehta G,. Kuhad RC (2012) Fungal delignification of lignocelluloses biomass improves the saccharification of cellulosics. Biodegradation. 22: 823–831

  • Gupte A, Gupte S, Patel H (2007) Ligninolytic enzyme production under solid state fermentation by white-rot fungi. J Sci Ind Res 66:611–614

    CAS  Google Scholar 

  • Hernández Fernaud JR, Marina A, González K, Vázquez J, Flacón MA (2006) Production, partial characterization and mass spectrometric studies of the extracellular laccase activity from Fusarium proliferatum. Appl Microbiol Biotechnol 70:212–221

    Article  Google Scholar 

  • Kapoor S, Khanna PK, Katyal P (2009) Effect of supplementation of wheat straw on growth and lignocellulolytic Enzyme Potential of Lentinus edodes. World J Agric Sc 5:328–331

    CAS  Google Scholar 

  • Khanam R, Gyanaprasuna R (2014) Strain improvement of white rot fungi Pycnoporus cinnabarinus with the influence of physical and chemical mutagens for enhancing laccase production. J Sci Ind Res 73:331–337

    CAS  Google Scholar 

  • Lee IH, Walline RG, Plamann M (1998) Apolar growth of Neurospora crassa leads to increased secretion of extracellular proteins. Mol Microbiol 29:209–218

    Article  CAS  Google Scholar 

  • Li L, Li XZ, Tang WZ, Zhao J, Qu YB (2008) Screening of a fungus capable of powerful and selective delignification of wheat straw. Lett Appl Microbiol 47:415–420

    Article  CAS  Google Scholar 

  • Liao W, Liu Y, Frear C, Chen S (2007) A new approach of pellet formation of a filamentous fungus—Rhizopus oryzae. Bioresour Technol 98:3415–3423

    Article  CAS  Google Scholar 

  • Lorenzo M, Moldes D, Rodr´ıguez Couto S, Sanromán A (2002) Improvement in laccase production by employing different lignocellulosic wastes in submerged cultures of Trametes versicolor. Bioresour Technol 82:109–113

    Article  CAS  Google Scholar 

  • Mathur G, Nigam R. Jaiswal A, Kumar C (2013) Bioprocess parameter optimization for laccase production in solid state fermentation. Int J Biotechnol Bioeng Res 4:521–530

    Google Scholar 

  • Moturi B, Charya MAS (2010) Influence of physical and chemical mutagens on dye decolourising. Mucor mucedo Afr J Biotechnol 4:1808–1813

    CAS  Google Scholar 

  • Mulligan C. Chow N. Terry Y (1991) Enhanced production of biosurfactant through the use of a mutated B.subtilis strain. U S Patent 5:037,758

    Google Scholar 

  • Osma JF (2009) Production of laccases by the white-rot fungus Trametes pubescens for their potential application to synthetic dye treatment. Doctoral Thesis. Universitat Rovira i Virgili, Tarragona, Spain

  • Pandey A (1992) Recent process developments in solid-state fermentation. Process Biochem 27:109–117

    Article  CAS  Google Scholar 

  • Peberdy JF (1994) Protein secretion in filamentous fungi—trying to understand a highly productive black box. Trends Biotechnol 12:50–57

    Article  CAS  Google Scholar 

  • Qingqing JCW, Guohui L, Jinning Z, Dawei L, Fenglin H, Wei Q (2014) Laccase immobilized on a PAN/adsorbents composite nanofibrous membrane for catechol treatment by a biocatalysis/adsorption process. Molecules 19:3376–3388

    Article  Google Scholar 

  • Ramzan M, Asgher M, Sheikh MA, Bhatti HN (2013) Hyper production of Manganese peroxidise through chemical mutagenesis of Tremetes versicolor IBL-04 and optimization of process parameters. Bioresources 8:3953–3966

    Article  Google Scholar 

  • Rodríguez Couto S, Moldes D, Liébanas A, Sanromán A (2003) Investigation of several bioreactor configurations for laccase production by Trametes versicolor operating in solid-state conditions. Biochem Eng J 15:21–26

    Article  Google Scholar 

  • Rodríguez Couto S. Osma JF, Toca-Herrera JL (2009) Removal of synthetic dyes by an eco-friendly strategy. Eng Life Sci 9:116–123

    Article  Google Scholar 

  • Sharma RK, Arora DS (2010) Changes in biochemical constituents of paddy straw during degradation by white rot fungi and its impact on in vitro digestibility. J Appl Microbiol 109:679–686

    CAS  PubMed  Google Scholar 

  • Shrivastava B, Thakur S, Pal Khasa Y, Gupte A, Puniya AK, Kuhad, RC (2011) White-rot fungal conversion of wheat straw to energy rich cattle feed. Biodegradation 22:823–831

    Article  CAS  Google Scholar 

  • Singhania RR, Sukumaran RK, Patel AK, Larroche C, Pandey A (2010) Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme Microb Technol 46:541–549

    Article  CAS  Google Scholar 

  • Vares T, Kalsi M, Hatakka A (1995) Lignin peroxidase, manganese peroxidase and other ligninolytic enzymes produced by Phlebia radiata during solid state fermentation on wheat straw. Appl Env Microbiol 61:3515–3520

    CAS  Google Scholar 

  • Venkatanagaraju E, Chittaranjan D, Akihito C (2018) Bioparametric investigation of mutant Bacillus subtilis MTCC 2414 extracellular laccase production under solid state fermentation. Curr Trends Biotechnol Pharm 12(1):65–74

    Google Scholar 

  • Weenink XO, Punt PJ, van den Hondel CAMJJ, Ram AFJ (2005) A new method for screening and isolation of hypersecretion mutants in Aspergillus niger. Appl Microbiol Biotechnol 69:711–717

    Article  Google Scholar 

Download references

Acknowledgements

Financial assistance provided by University Grants Commission (UGC), New Delhi to carry out the aforementioned research work is acknowledged by the authors. (Sanction no: F.47–052/06.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akshaya Gupte.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chhaya, U., Gupte, A. Studies on a better laccase-producing mutant of Fusarium incarnatum LD-3 under solid substrate tray fermentation. 3 Biotech 9, 100 (2019). https://doi.org/10.1007/s13205-019-1605-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-019-1605-z

Keywords

Navigation