Skip to main content
Log in

Effect of different cultivation conditions and inducers on the production of laccase by the litter-dwelling fungal isolate Fusarium incarnatum LD-3 under solid substrate fermentation

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

The litter-dwelling fungus Fusarium incarnatum LD-3 has been identified as a novel producer of laccase. The present work was oriented towards the optimization of various cultivation conditions for maximizing laccase production under solid substrate fermentation. The process parameters were optimized by the “one factor at a time” approach. Maximum laccsase production was obtained at pH 5.0 and at a temperature of 28 °C with 60 % moisture content using rice bran as a substrate. The laccase production was enhanced in the presence of aromatic inducer, i.e. ortho-dianisidine at a concentration of 0.5 mM. Laccase production was further increased by 52.56 % when the medium was supplemented with 2 % (v/v) alcohol. Among the various amino acids tested as a growth factor and nitrogen source, D-Serine and DL-2 Amino n-butyric acid, DL-Alanine and L-Glycine were found to be the most suitable for laccase production. The highest laccase production (1,352.64 U/g) was achieved under optimized conditions, and was 2.1-fold higher than the unoptimized conditions. Thus, the novel litter-dwelling fungal isolate Fusarium incarnatum LD-3 seems to be an efficient producer of laccase and can be further exploited for biotechnological applications. This is the first report on the optimization of cultivation conditions and inducers for laccase production from Fusarium incarnatum LD-3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adinarayana K, Prabhakar T, Srinivasulu V, Anitha Rao M, Jhansi Laxmi P, Ellaiah P (2003) Optimization of process parameters for cephalosporin C production under solid state fermentation from Acremonium chrysigenum. Process Biochem 39:171–177

    Article  CAS  Google Scholar 

  • Asther M, Lesage L, Drapron R, Corrieu G, Odier E (1988) Phospholipid and fatty acid enhancement of Phanerochaete chrysosporium INA-12 in relation to ligninase production. Appl Microbiol Biotechnol 27:393–398

    Article  CAS  Google Scholar 

  • Banerjee UC, Vohra RM (1991) Production of laccase by Curvularia sp. Folia Microbiol 36:343–346

    Article  CAS  Google Scholar 

  • Barbosa AM, Dekker RFH, Hardy GE (1996) Veratryl alcohol as an inducer of laccase by an ascomycete, Bortyosphaeria sp., when screened on polymeric dye Ploy R-478. Letters Appl Microbiol 23:393–398

    Article  Google Scholar 

  • Bellon-Maurel V, Orliac O, Christen P (2003) Sensors and measures in solid state fermentation: a review. Process Biochem 38:881–896

    Article  CAS  Google Scholar 

  • Binz T, Canevascini G (1997) Purification and partial characterization of the extracellular laccase from Ophiostoma novo-ulmi. Curr Microbiol 35:278–281

    Article  CAS  Google Scholar 

  • Bollag JM, Leonowicz A (1984) Comparative studies of extracellular fungal laccases. Appl Environ Microbiol 48:849–854

    PubMed  CAS  Google Scholar 

  • Breen A, Singleton FL (1999) Fungi in lignocellulose breakdown and biopulping. Curr Opin Biotechnol 10:252–258

    Article  PubMed  CAS  Google Scholar 

  • Brenna O, Bianchi E (1994) Immobilized laccase for phenolic removal in must and wine. Biotechnol Lett 24:35–40

    Article  Google Scholar 

  • Dhawan S, Kuhad RC (2002) Effect of aminoacids and vitamins on laccase production by the bird’s nest fungus Cyathus bulleri. Bioresour Technol 84:35–38

    Article  PubMed  CAS  Google Scholar 

  • Edens WA, Goins TQ, Dooley D, Henson JM (1999) Purification and characterization of a secreted laccase of Gaeumannomyces graminis var. tritici. Appl Environ Microbiol 65:3071–3074

    PubMed  CAS  Google Scholar 

  • Farani De Souza D, Tychanowicz GK, Marques De Souza CG, Peralta RM (2006) Coproduction of ligninolytic enzymes by Pleurotus pulmonarius on wheat bran solid state cultures. J Basic Microbiol 46:126–134

    Article  Google Scholar 

  • Froehner SC, Eriksson KE (1974) Purification and properties of Neurospora crassa laccase. J Bacteriol 120:458–465

    PubMed  CAS  Google Scholar 

  • Ghindilis AL, Garvrilova VP, Yaropolov AI (1992) Laccase based bioreactor for the determination of catechols in tea. Biosens Bioelectron 7:127–131

    Article  PubMed  CAS  Google Scholar 

  • Giardina P, Faraco V, Pezzella C, Piscitelli A, Vanhulle S, Sannia G (2010) Laccase: a never ending story. Cell Mol Life Sci 67:369–385

    Article  PubMed  CAS  Google Scholar 

  • Gigi OI, Marbach, Mayer AM (1980) Induction of laccase formation in Botrytis. Phytochemistry 19:2273–2275

    Article  CAS  Google Scholar 

  • Gupte A, Gupte S, Patel H (2007) Ligninolytic enzyme production under solid substrate fermentation by white rot fungi. J Sci Ind Res 66:611–614

    CAS  Google Scholar 

  • Hernández Fernaud JR, Marina A, González K, Vázquez J, Flacón MA (2006) Production, partial characterization and mass spectrometric studies of the extracellular laccase activity from Fusarium proliferatum. Appl Microbiol Biotechnol 70:212–221

    Article  Google Scholar 

  • Ikehata K, Buchanan DL, Smith DW (2004) Recent developments in the production of extracellular fungal peroxidases and laccases for waste treatment. J Environ Engin Sci 3:1–19

    Article  CAS  Google Scholar 

  • Iyer G, Chattoo BB (2003) Purification and characterization of laccase from the rice blast fungus Magnoporthe grisea. FEMS Microbiol Lett 227:121–126

    Article  PubMed  CAS  Google Scholar 

  • Juan Carlos M, Richard A, Anne L, Jean-Claude S, Laurence C (2007) Role of ethanol on growth laccase production and protease activity in Pycnoporus cinnabarinus ss3. Enzyme Microb Technol 41:162–168

    Article  Google Scholar 

  • Kapoor S, Khanna PK, Katyal P (2009) Effect of supplementation of wheat straw on growth and lignocellulolytic Enzyme Potential of Lentinus edodes. World J Agric Sci 5:328–331

    CAS  Google Scholar 

  • Kumar D, Jain VK, Shankar G, Srivastava A (2003) Citric acid production by solid state fermentation using sugarcane bagasse. Process Biochem 38:1731–1738

    Article  CAS  Google Scholar 

  • Levin L, Melignani E, Ramos AM (2010) Effect of nitrogen sources and vitamins on ligninolytic enzyme production by some white-rot fungi. Dye decolorization by selected culture filtrates. Bioresour Technol 101:4554–4563

    Article  PubMed  CAS  Google Scholar 

  • Mazumder S, Basu SK, Mukherjee M (2009) Laccase production in solid-state and submerged fermentation by Pleurotus ostreatus. Eng Life Sci 9:45–52

    Article  CAS  Google Scholar 

  • Munoz C, Guillen F, Martinez AT, Martinez MJ (1997) Induction and characterization of laccase in the lininolytic fungus Pleurotus eryngii. Curr Microbiol 34:1–5

    Article  PubMed  CAS  Google Scholar 

  • Niku-Paavola ML, Karhunen E, Kentelinen A, Viikari L, Lundell T, Hatakka A (1990) The effect of culture conditions on the production of lignin modifying enzymes by the white rot fungus Phlebia radiata. J Biotechnol 13:211–221

    Article  Google Scholar 

  • Niladevi KN, Prema P (2008) Effect of inducers and process parameters on laccase production by Streptomyces psammoticus and its application in dye decolourization. Bioresource Technol 11:4583–4589

    Article  Google Scholar 

  • Osma JF, Herrera JLT, Couto SR (2007) Banana skin: a novel waste for laccase production by Trametes pubescens under solid-state conditions: application to synthetic dye decolouration. Dyes Pigments 75:32–37

    Article  CAS  Google Scholar 

  • Pandey A, Carlos RS, David M (2000) New developments in solid state fermentation: I-bioprocesses and products. Process Biochem 35:1153–1169

    Article  CAS  Google Scholar 

  • Piccard MA, Vandertol H, Roman R, Vanquez-Duhalt R (1999) High production of ligninolytic enzymes from white rot fungiin cereal bran liquid medium. Can J Microbiol 45:627–631

    Article  Google Scholar 

  • Pointing SB, Jones EGB, Vrijmoed LLP (2000) Optimization of laccase production by Pycnoporus sanguineus in submerged liquid culture. Mycologia 92:139–144

    Article  CAS  Google Scholar 

  • Raimbault M (1998) General and microbiological aspects of solid substrate fermentation. Electron J Biotechnol 1:174–188

    Article  Google Scholar 

  • Revankar MS, Lele SS (2006) Enhanced production of laccase using new isolate of white rot fungus WR-1. Process Biochem 41:581–588

    Article  CAS  Google Scholar 

  • Rodŕiguez A, Falcón MA, Carnicero F, Perestelo G, Fuente da le G, Trojanowaski J (1996) Laccase activity of Penicillium chrysogenum in relation to lignin degradation. Appl Microbiol Biotechnol 45:399–403

    Article  Google Scholar 

  • Rogalado V, Parestelo F, Rodriguez A, Carnicero A, Sosa FJ, De la Fuente G et al (1999) Activated oxygen species and two extracellular enzymes: laccase and aryl alcohol oxidase, novel for the lignin degrading fungus Fusarium proliferatum. Appl Microbiol Biotechnol 51:388–390

    Article  Google Scholar 

  • Saparrat MCN, Martinez MJ, TournierHA CMN, Arambarri AM (2000) Production of lignolytic enzymes by Fusarium solani strains isolated from different substrata. World J Microbiol Biotechnol 16:799–803

    Article  CAS  Google Scholar 

  • Scherer M, Fischer R (1998) Purification and characterization of laccase II of Aspergillus nidulans. Arch Microbiol 170:78–84

    Article  PubMed  CAS  Google Scholar 

  • Sharma KK, Kapoor M, Kuhad RC (2005) In vivo enzymatic digestion, in vitro xylanase digestion, metabolic analogues, surfactants and polyethylene glycol ameliorate laccase production from Ganoderma sp. Kk-02. Lett Appl Microbiol 41:24–31

    Article  PubMed  CAS  Google Scholar 

  • Shulter ML, Kargi F (2000) Bioprocess Engineering Basic Concept. Parentice Hall, New Delhi

    Google Scholar 

  • Steffen KT, Hofrichter M, Hatakka A (2000) Mineralization of C14 labelled synthetic lignin and ligninolytic enzyme activities of litter decomposing basidiomycetous fungi. Appl Microbiol Bioeng 54:736–744

    Google Scholar 

  • Steffen KT, Hofrichter M, Hatakka A (2003) Degradation of benzo{a}pyrene by the litter decomposing basidiomycete Stropharia corrolina: role of manganese peroxidase. Appl Environ Microbiol 69:3957–3964

    Article  PubMed  CAS  Google Scholar 

  • Thurston CF (1994) The structure and function of fungal laccases. Microbiology 40:19–26

    Article  Google Scholar 

  • Vares T, Kalsi M, Hatakka A (1995) Lignin peroxidase, manganese peroxidase and other ligninolytic enzymes produced by Phlebia radiate during solid state fermentation on wheat straw. Appl Environ Microbiol 61:3515–3520

    PubMed  CAS  Google Scholar 

  • Xiao YZ, Chen Q, Hang J, Shi YY, Wu J, Hong YZ, Wang YP (2004) Selective induction,purification and characterization of laccase isozyme from the basidiomycete Trametes sp. AH28-2. Mycologia 96:26–35

    Article  PubMed  CAS  Google Scholar 

  • Zadrazil F, Gonser A, Lang E (1999) Influence of incubation temperature on the secretion of extracellular lignolytic enzymes of Pleurotus and Dichomitus squalus into soil. Proceedings of the Conference on Enzymes in Environment, Granada, Spain

  • Zubeyde B, Fikret U, Cetin A (2003) Solid state fermentation for production of α –amylase by a thermotolerant Bacillus subtilis from hot spring water. Process Biochem 38:1665–1668

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akshaya Gupte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chhaya, U., Gupte, A. Effect of different cultivation conditions and inducers on the production of laccase by the litter-dwelling fungal isolate Fusarium incarnatum LD-3 under solid substrate fermentation. Ann Microbiol 63, 215–223 (2013). https://doi.org/10.1007/s13213-012-0464-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-012-0464-1

Keywords

Navigation