Skip to main content
Log in

The impact of antisite disorder on the physical properties of La2FeB"O6 (Bʺ = Fe, Ni and Co) double perovskites

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

The synthesis, structural, morphological characterization, as well as the magnetic properties, of a double perovskite family La2FeB"O6, (Bʺ = Fe, Co, and Ni) were studied. The investigated samples were synthesized by a modified citrate auto combustion route. The crystal structure and microstructure were refined applying Rietveld profile refinements with the help of the Maud Program. The difference between the detected and simulated powder diffraction patterns is minimized using the reliability index parameter. The presence of nanometric crystallite was confirmed by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The presence of multiple oxidation states of Fe, Co and Ni were confirmed by X-ray photoelectron spectroscopy (XPS). The maximum value of exchange bias was obtained for La2Fe2O6, while La2FeNiO6 recorded the minimum value. In the investigated samples, the different natures of antiphase boundaries (APBs) cause the lack of magnetic saturation at relatively high magnetic fields. On the other side, the existence of various magnetic interactions with different magnetic antisite disorder (ASD) initiate the system to change to spin glass state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abbas YM et al (2019) Investigation of structural and magnetic properties of multiferroic La1–xYxFeO3 perovskites, prepared by citrate auto-combustion technique. J Magn Magn Mater 482:66–74

    Article  CAS  Google Scholar 

  • Aguilar B, Soto TE, de la TorreMedina J, Navarro O (2019) Curie temperature enhancement in the double perovskite Sr2−xLaxFeMoO6. Phys B Condens Matter 556:108–113

    Article  CAS  Google Scholar 

  • Ahmed T, Chen A, Yarotski DA, Trugman SA, Jia Q, Zhu JX (2017) Magnetic, electronic, and optical properties of double perovskite Bi2FeMnO6. APL Mater 5:5601. https://doi.org/10.1063/1.4964676

    Article  CAS  Google Scholar 

  • Alarcón-Suesca CE, Deluque Toro CE, Gil Rebaza AV, Landínez Téllez DA, Roa-Rojas J (2019) Ab-initio studies of electronic, structural and thermophysical properties of the Sr2TiMoO6 double perovskite. J Alloys Compd 771:1080–1089

    Article  Google Scholar 

  • Almessiere MA, Slimani Y, Baykal A, Trukhanov SV, Trukhanov AV (2019) Manganese/yttrium codoped strontium nanohexaferrites: evaluation of magnetic susceptibility and mossbauer spectra. Nanomaterials 9:1–18. https://doi.org/10.3390/nano9010024

    Article  CAS  Google Scholar 

  • Anderson MT, Greenwood KB, Taylor GA, Poeppelmeier KR (1993) B-cation arrangements in double perovskites. Prog Solid State Chem 22(3):197–233

    Article  CAS  Google Scholar 

  • Asaka T et al (2007) Strong pinning effect and magnetic nanodomain formation by coupling between magnetic and crystallographic domains in the ordered double perovskite Ba2FeMoO6. Phys Rev B 75:1–6

    Article  Google Scholar 

  • Ateia EE, Mohamed AT (2017) Improvement of the magnetic properties of magnesium nanoferrites via CO2+/Ca2+ doping. J Supercond Nov Magn 30:627–633

    Article  CAS  Google Scholar 

  • Ateia E, Abdelamksoud MK, Rizk MA (2017) Improvement of the physical properties of novel (1–x) CoFe2O4 + (x) LaFeO3 nanocomposites for technological applications. J Mater Sci Mater Electron 28:16547–16553

    Article  CAS  Google Scholar 

  • Ateia EE, Mohamed AT, Morsy M (2019) Humidity sensor applications based on mesopores LaCoO3. J Mater Sci Mater Electron 30:19254–19261. https://doi.org/10.1007/s10854-019-02284-y

    Article  CAS  Google Scholar 

  • Ateia EE, Ramadan R, Shafaay AS (2020a) Efficient treatment of lead-containing wastewater by CoFe2O4/graphene nanocomposites. Appl Phys A 126(1):8

    Google Scholar 

  • Ateia EE, Abdelmaksoud MK, Arman MM et al (2020b) Comparative study on the physical properties of rare-earth-substituted nano-sized CoFe2O4. Appl Phys A 126(2):1–10. https://doi.org/10.1007/s00339-020-3282-5

    Article  CAS  Google Scholar 

  • Bhagwat M, Ramaswamy AV, Tyagi AK, Ramaswamy V (2003) Rietveld refinement study of nanocrystalline copper doped zirconia. Mater Res Bull 38:1713–1724

    Article  CAS  Google Scholar 

  • Dhilip M, Devi NA, Punitha JS, Anbarasu V, Kumar KS (2019) Conventional synthesis and characterization of cubically ordered La2FeMnO6 double perovskite compound. Vacuum 167:16–20

    Article  CAS  Google Scholar 

  • Erten O, Meetei ON, Mukherjee A, Randeria M, Trivedi N, Woodward P (2011) Theory of half-metallic ferrimagnetism in double perovskites. Phys Rev Lett 107(257201):1–4

    Google Scholar 

  • Fuster V, Druker AV, Baruj A, Malarría J, Bolmaro R (2015) Characterization of phases in an Fe–Mn–Si–Cr–Ni shape memory alloy processed by different thermomechanical methods. Mater Charact 109:128–137

    Article  CAS  Google Scholar 

  • Ghaffari M, Shannon M, Hui H, Kiang O, Irannejad A (2012) Preparation, surface state and band structure studies of SrTi(1-x)Fe(x)O(3-δ) (x = 0–1) perovskite-type nano structure by X-ray and ultraviolet photoelectron spectroscopy. Surf Sci 606(5–6):670–677

    Article  CAS  Google Scholar 

  • Gorodea IA (2014) Influence of the B-site cation nature on crystal structure and magnetic properties of Ca2BMoO6 (B = Cr, La, Sm) double perovskite. Acta Chem Iasi 154:145–154

    Article  Google Scholar 

  • Harbi A et al (2019) The effect of cation disorder on magnetic properties of new double perovskites La2NixCo1-xMnO6 (x = 0.2–0.8). J Alloys Compd 778:105–114

    Article  CAS  Google Scholar 

  • Jin C (2017) Synthesis and nonlinear optical property of polycrystalline. Appl Phys A 123(4):1–5

    Google Scholar 

  • Jørgensen CK, Berthou H (1972) Split photo-electron-signals from the unique closed-shell cation lanthanum (III). Chem Phys Lett 13(3):1–4

    Article  Google Scholar 

  • Joshi S, Kamble VB, Kumar M, Umarji AM, Srivastava G (2016) Nickel substitution induced effects on gas sensing properties of cobalt ferrite nanoparticles. J Alloys Compd 654:460–466

    Article  CAS  Google Scholar 

  • Ke S, Fan H, Huang H (2009) Dielectric relaxation in A2FeNbO6 (A = Ba, Sr, and Ca) perovskite ceramics. J Electroceram 6:252–256

    Article  Google Scholar 

  • Kimura T, Sawada H, Terakura K (1998) Room-temperature magneto resistance in an oxide material with an ordered double-perovskite structure. Nature 395:677–680

    Article  Google Scholar 

  • Krishna Murthy J, Jyotsna G, Nileena N, Anil Kumar PS (2017) Strain induced ferromagnetism and large magnetoresistance of epitaxial La1.5Sr0.5CoMnO6 thin films. J Appl Phys 122:065307

    Article  Google Scholar 

  • Li Q et al (2014) The effect of Ca-substitution in La-site on the magnetic properties of La2CoMnO6. J Appl Phys 116:3–7

    Google Scholar 

  • Lira-Hernández IA, Barrientos-Hernández FR, Pérez-Labra M, García-Mercado AM, Romero-Serrano JA (2016) Comments about Rietveld analysis and tolerance factor: Y doped BaTiO3. Preprints. https://doi.org/10.20944/preprints201610.0126.v1

    Article  Google Scholar 

  • Manik SK, Pradhan SK (2004) Microstructure characterization of ball milled prepared nanocrystalline perovskite CaTiO3 by Rietveld method. Mater Chem Phys 86:284–292

    Article  CAS  Google Scholar 

  • Markandeya Y, Reddy YS, Bale S (2015) Characterization and thermal expansion of Sr2FexMo2–xO6 double perovskites. Bull Mater Sci 38(6):1603–1608

    Article  CAS  Google Scholar 

  • Morrow R, Freeland JW, Woodward PM (2014) Probing the Links between Structure and Magnetism in Sr2-xCaxFeOsO6 double perovskites. Inorg Chem 53:7983–7992

    Article  CAS  Google Scholar 

  • Mumtaz A, Khan M, Janjua BH, Hasanain K (2007) Exchange bias and vertical shift in CoFe2O4 nanoparticles. J Magn Magn Mater 313:266–272

    Article  CAS  Google Scholar 

  • Navarro J, Balcells L, Sandiumenge F, Roig A, Martinez B, Fontcuberta J (2001) Antisite defects and magnetoresistance in Sr2FeMoO6 double perovskite. J Phys C Condens Matter 13:8481

    Article  CAS  Google Scholar 

  • Pilania G, Uberuaga BP, Ramprasad R, Gubernatis JE (2016) Machine learning bandgaps of double perovskites. Sci Rep 6:1–10

    Article  Google Scholar 

  • Rajagopalan R, Chen B (2017) Improved reversibility of Fe3+/Fe4+ redox couple in sodium super ion conductor type Na3Fe2(PO4)3 for sodium-ion batteries. Adv Mater 29(12):1605694

    Article  Google Scholar 

  • Sahoo RC, Giri SK, Paladhi D, Das A, Nath TK (2016) Evidence of cluster-glass-like state at low temperature in anti-site disordered La1.5Ca0.5CoMnO6 double perovskite. J Appl Phys 120:033906. https://doi.org/10.1063/1.4958980

    Article  CAS  Google Scholar 

  • Sclauzero G, Dymkowski K, Ederer C (2016) Tuning the metal-insulator transition in d1 and d2 perovskites by epitaxial strain: a first principles-based study. Phys Rev B 94:1–11

    Article  Google Scholar 

  • SilvaRX, Reichlova H, Marti X, Paniago R, Paschoal CWA (2018) Anti-ferromagnetic interaction in double perovskites probed by Raman spectroscopy.

  • Singh VN (2012) The impact of antisite disorder on magnetism and transport in the double perovskites. A Thesis submitted to the Board of Studies in Physical Science Discipline, Homi Bhabha National Institute. http://hdl.handle.net/10603/11360

  • Singh J, Kumar A (2019) Facile wet chemical synthesis and electrochemical behavior of La2FeCoO6 nano-crystallites. Mater Sci Semicond Process 99:8–13

    Article  CAS  Google Scholar 

  • Singh VN, Majumdar P (2011) Antisite domains in double perovskite ferromagnets: impact on magnetotransport and half-metallicity. EPL 94:1–6. https://doi.org/10.1209/0295-5075/94/47004

    Article  CAS  Google Scholar 

  • Sudha, Saxena M, Balani K, Maiti T (2019) Structure and thermoelectric properties of calcium doped Sr2TiCoO6 double perovskites. Mater Sci Eng B 244:65–71

    Article  CAS  Google Scholar 

  • Tezuka K, Henmi K, Hinatsu Y, Masaki NM (2000) Magnetic susceptibilities and Mossbauer spectra of perovskites A2FeNbO6 (A = Sr, Ba). J Solid State Chem 154:591–597

    Article  CAS  Google Scholar 

  • Tulliani J, Maria M, Tortora L, Sora IN (2015) Ageing of lanthanum strontium copper orthoferrite powders for sensing layers. Chem Eng Trans 43(2013):1807–1812

    Google Scholar 

  • Uhlenbrockt S, Scharfschwerdtt C, Neumannt M, Illing G, Freund H-J (1992) The influence of defects on the Ni 2p and 0 1s XPS of NiO. J Phys Condens Matter 4:7973–7978

    Article  Google Scholar 

  • Vandana CS, Rudramadevi BH (2017) Rietveld study of Cu doped gadolinium orthoferrites. IJRASET 5:1999–2004

    Article  Google Scholar 

  • Vasala S, Karppinen M (2015) A2B0B00O6 perovskites: a review. Prog Solid State Chem 43:1–36

    Article  CAS  Google Scholar 

  • Xu X, Zhong Y, Shao Z (2019) Double perovskites in catalysis, electrocatalysis, and photo(electro)catalysis. Trends Chem 1–15

  • Zhao K et al (2016) Preparation of double perovskite-type oxide LaSrFeCoO6 for chemical looping steam methane reforming to produce syngas and hydrogen. J Rare Earths 34(10):1032–1041

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amira T. Mohamed.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ateia, E.E., Mohamed, A.T. & Elshimy, H. The impact of antisite disorder on the physical properties of La2FeB"O6 (Bʺ = Fe, Ni and Co) double perovskites. Appl Nanosci 10, 1489–1499 (2020). https://doi.org/10.1007/s13204-020-01356-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-020-01356-4

Keywords

Navigation