Skip to main content
Log in

Comparative study on the physical properties of rare-earth-substituted nano-sized CoFe2O4

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nanotechnology manufacturing is rapidly developing and promises that the essential changes will have significant commercial and scientific impacts be applicable in an extensive range of areas. In this area, cobalt ferrite nanoparticles have been considered as one of the competitive candidates. The present study is based on the investigation of the effect of rare-earth (RE) incorporation on the physical properties of CoFe2O4. Rare-earth ions doped cobalt ferrites with composition CoRE0.025Fe1.975O4 where RE are Ce, Er and Sm have been synthesized by citrate auto combustion technique. Characterization is achieved using X-Ray diffraction (XRD) technique for structural analysis. The obtained data show that the samples exhibit a single-phase spinel structure. RE is successfully substituted into the spinel lattice without any distortion and it acts as inhibiting agent for grain growth. Room temperature M–H curves exhibit ferrimagnetism behavior with a decrease in saturation magnetization and coercivity indicating these materials can be applicable for magnetic data storage and magneto-recording devices. The electrical conductivity is studied as a function of frequency in the temperature range of 300–700 K. The conduction mechanism is attributed to the hopping mechanism. The Seebeck coefficient S is found to be positive for Ce indicating that Co/Ce ferrite behaves as a p-type semiconductor. While it is fluctuated between positive and negative for Er/Sm-doped samples throughout the studied temperature range. The cobalt doped with Er3+ and Sm3+ exhibits degenerated semiconductor trends at higher temperatures. Such data offer a new opportunity for optimizing and improving the performance of cobalt ferrite where the physical properties are decisive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Rohini, S.G. Algude, D.S. Birajdar, Electrical and dielectric properties of zirconium doped nickel-zinc ferrite. World Res. J. Appl. Phys. 1(1), 14–19 (2010)

    Google Scholar 

  2. B. P. Parvatheeswara Rao et al., Synthesis and magnetic studies of Ni-Zn ferrite nanoparticles. J. Optoelectron. Adv. Mater., 8(5), 1703–1705 (2006)

  3. A. Ziarati, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, M.R. Ganjali, A. Badiei, Sonication method synergism with rare earth based nanocatalyst: preparation of NiFe2–xEuxO4 nanostructures and its catalytic applications for the synthesis of benzimidazoles, benzoxazoles, and benzothiazoles under ultrasonic irradiation. J. Rare Earths 35(4), 374–381 (2017)

    Article  Google Scholar 

  4. F. Ansari, M. Salavati-Niasari, Simple sol-gel auto-combustion synthesis and characterization of lead hexaferrite by utilizing cherry juice as a novel fuel and green capping agent. Adv. Powder Technol. 27(5), 2025–2031 (2016)

    Article  Google Scholar 

  5. M. Mahdiani, A. Sobhani, F. Ansari, M. Salavati-Niasari, Lead hexaferrite nanostructures: green amino acid sol–gel auto-combustion synthesis, characterization and considering magnetic property. J. Mater. Sci. Mater. Electron. 28(23), 17627–17634 (2017)

    Article  Google Scholar 

  6. S. Ahmadian-Fard-Fini, D. Ghanbari, O. Amiri, M. Salavati-Niasari, Electro-spinning of cellulose acetate nanofibers/Fe/carbon dot as photoluminescence sensor for mercury (II) and lead (II) ions. Carbohydr. Polym., 229, 115428 (2020)

  7. S. Ahmadian-Fard-Fini, D. Ghanbari, M. Salavati-Niasari, Photoluminescence carbon dot as a sensor for detecting of Pseudomonas aeruginosa bacteria: Hydrothermal synthesis of magnetic hollow NiFe 2 O 4 -carbon dots nanocomposite material. Compos. Part B Eng. 161(2018), 564–577 (2019)

    Article  Google Scholar 

  8. D. Ghanbari, M. Salavati-Niasari, M. Esmaeili-Zare, P. Jamshidi, F. Akhtarianfar, Hydrothermal synthesis of CuS nanostructures and their application on preparation of ABS-based nanocomposite. J. Ind. Eng. Chem. 20(5), 3709–3713 (2014)

    Article  Google Scholar 

  9. D. Ghanbari, M. Salavati-Niasari, Synthesis of urchin-like CdS-Fe3O4 nanocomposite and its application in flame retardancy of magnetic cellulose acetate. J. Ind. Eng. Chem. 24, 284–292 (2015)

    Article  Google Scholar 

  10. P. Jamshidi, D. Ghanbari, M. Salavati-Niasari, Sonochemical synthesis of La(OH)3 nanoparticle and its influence on the flame retardancy of cellulose acetate nanocomposite. J. Ind. Eng. Chem. 20(5), 3507–3512 (2014)

    Article  Google Scholar 

  11. S. Mortazavi-Derazkola, M. Salavati-Niasari, O. Amiri, A. Abbasi, Fabrication and characterization of Fe3O4@SiO2@TiO2@Ho nanostructures as a novel and highly efficient photocatalyst for degradation of organic pollution. J. Energy Chem. 26(1), 17–23 (2017)

    Article  Google Scholar 

  12. A. Abbasi, D. Ghanbari, M. Salavati-Niasari, M. Hamadanian, Photo-degradation of methylene blue: photocatalyst and magnetic investigation of Fe2O3–TiO2 nanoparticles and nanocomposites. J. Mater. Sci. Mater. Electron. 27(5), 4800–4809 (2016)

    Article  Google Scholar 

  13. C. V. Gopal Reddy, S. V. Manorama, V. J. Rao, Semiconducting gas sensor for chlorine based on inverse spinel nickel ferrite. Sens. Actuators B Chem., 55(1), 90–95 (1999)

  14. C.P. Luo, S.H. Liou, L. Gao, Y. Liu, D.J. Sellmyer, Nanostructured FePt:B2O3 thin films with perpendicular magnetic anisotropy. Appl. Phys. Lett. 77(14), 2225–2227 (2000)

    Article  ADS  Google Scholar 

  15. A.K. Nikumbh et al., Structural, electrical, magnetic and dielectric properties of rare-earth substituted cobalt ferrites nanoparticles synthesized by the co-precipitation method. J. Magn. Magn. Mater. 355, 201–209 (2014)

    Article  ADS  Google Scholar 

  16. J. Depeyrot et al., Rare earth doped maghemite EDL-MF: A perspective for nanoradiotherapy ? J. Magn. Magn. Mater., 252(1–3 SPEC. ISS), 375–377 (2002)

  17. M. Yehia, S.M. Ismail, A. Hashhash, Structural and magnetic studies of rare-earth substituted nickel ferrites. J. Supercond. Nov. Magn. 27(3), 771–774 (2014)

    Article  Google Scholar 

  18. M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, M.R. Jeddy, Nanocrystalline Ce-doped copper ferrite: synthesis, characterization, and its photocatalyst application. J. Mater. Sci. Mater. Electron. 27(11), 11691–11697 (2016)

    Article  Google Scholar 

  19. H.T.J. Zhou, J. Ma, C. Sun, L. Xie, Z. Zhao, Low-temperature synthesis of NiFe2O4 by a hydrothermal method. J. Am. Ceram. Soc. 88(12), 3535–3537 (2005)

    Article  Google Scholar 

  20. B.D. Cullity, Elements of X-ray Diffraction, Third (Addison-Wesley, London, London, 1967)

    Google Scholar 

  21. L. Corbari et al., Iron oxide deposits associated with the ectosymbiotic bacteria in the hydrothermal vent shrimp Rimicaris exoculata. Biogeosciences 5(5), 1295–1310 (2008)

    Article  ADS  Google Scholar 

  22. S. Brunauer, L.S. Deming, W.E. Deming, E. Teller, On a theory of the van der waals adsorption of gases. J. Am. Chem. Soc. 62(7), 1723–1732 (1940)

    Article  Google Scholar 

  23. S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60(2), 309–319 (1938)

    Article  ADS  Google Scholar 

  24. https://www.chemistrylearning.com/adsorption-isotherm.” .

  25. K. Elayakumar et al., Structural, morphological, enhanced magnetic properties and antibacterial bio-medical activity of rare earth element (REE) cerium (Ce3+) doped CoFe2O4 nanoparticles. J. Magn. Magn. Mater. 476, 157–165 (2019)

    Article  ADS  Google Scholar 

  26. E. Ateia, M.A. Ahmed, A.K. El-Aziz, Effect of rare earth radius and concentration on the structural and transport properties of doped Mn–Zn ferrite. J. Magn. Magn. Mater. 311(2), 545–554 (2007)

    Article  ADS  Google Scholar 

  27. K.-C. Kao, W. Hwang, Electrical Transport in Solids: with Particular Reference to Organic Semiconductors (Pergamon Press, Oxford, 1981)

    Google Scholar 

  28. H.P. Klug, L.E. Alexander, X-ray diffraction procedures for polycrystalline and amorphous materials (Wiley, Hoboken, 1962)

    Google Scholar 

  29. S.R. Naik, A.V. Salker, Change in the magnetostructural properties of rare earth doped cobalt ferrites relative to the magnetic anisotropy. J. Mater. Chem. 22(6), 2740–2750 (2012)

    Article  Google Scholar 

  30. D.M. Ghone, V.L. Mathe, K.K. Patankar, S.D. Kaushik, Microstructure, lattice strain, magnetic and magnetostriction properties of holmium substituted cobalt ferrites obtained by co-precipitation method. J. Alloys Compd. 739, 52–61 (2018)

    Article  Google Scholar 

  31. Z. Chen, Y. Du, Z. Li, K. Yang, X. Lv, Controllable synthesis of magnetic Fe3O4 particles with different morphology by one-step hydrothermal route. J. Magn. Magn. Mater. 426, 121–125 (2017)

    Article  ADS  Google Scholar 

  32. D.J. Craik, Magnetic oxides (Wiley, London, 1975)

    Google Scholar 

  33. F.T. Parker, M.W. Foster, D.T. Margulies, A.E. Berkowitz, Spin canting, surface magnetization, and finite-size effects in \ensuremath{\gamma}-${\mathrm{Fe}}_{2}$${\mathrm{O}}_{3}$ particles. Phys. Rev. B 47(13), 7885–7891 (1993)

    Article  ADS  Google Scholar 

  34. M.P. Morales, C.J. Serna, F. Bødker, S. Mørup, Spin canting due to structural disorder in maghemite. J. Phys. Condens. Matter 9(25), 5461–5467 (1997)

    Article  ADS  Google Scholar 

  35. V. Kumar, A. Rana, M.S. Yadav, R.P. Pant, Size-induced effect on nano-crystalline CoFe2O4. J. Magn. Magn. Mater. 320(11), 1729–1734 (2008)

    Article  ADS  Google Scholar 

  36. E. Ateia, L.M. Salah, A.A.H. El-Bassuony, Investigation of Cation Distribution and Microstructure of Nano Ferrites Prepared by Different Wet Methods. J. Inorg. Organomet. Polym. Mater. 25(6), 1362–1372 (2015)

    Article  Google Scholar 

  37. J. Smit, Magnetic properties of materials (McGraw-Hill, New York, 1971)

    Google Scholar 

  38. L. Kumar, M. Kar, Effect of Ho3+ substitution on the cation distribution, crystal structure and magnetocrystalline anisotropy of nanocrystalline cobalt ferrite. J. Exp. Nanosci. 9(4), 362–374 (2014)

    Article  Google Scholar 

  39. T. Sodaee, A. Ghasemi, E. Paimozd, Remarkable influence of terbium cations on the magnetic properties of cobalt ferrite nanoparticles. Mater. Phys. Mech. 17(1), 11–16 (2013)

    Google Scholar 

  40. C. Yan et al., Sol–gel synthesis, magnetic and magneto-optical properties of CoFe2−xTbxO4 nanocrystalline films. J. Magn. Magn. Mater. 192(3), 396–402 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  41. T. Sodaee, A. Ghasemi, E. Paimozd, A. Paesano, A. Morisako, An approach for enhancement of saturation magnetization in cobalt ferrite nanoparticles by incorporation of terbium cation. J. Electron. Mater. 42(9), 2771–2783 (2013)

    Article  ADS  Google Scholar 

  42. E. Ateia, A.A.H. El-Bassuony, Fascinating improvement in physical properties of Cd/Co nanoferrites using different rare earth ions. J. Mater. Sci. Mater. Electron. 28(15), 11482–11490 (2017)

    Article  Google Scholar 

  43. E. Ateia, M.A. Ahmed, R.M. Ghouniem, Effect of rare earth substitution on the structural and electrical properties of Cu–Mg ferrite. Int. J. Mod. Phys. B 29(19), 1550126 (2015)

    Article  ADS  Google Scholar 

  44. M.T. Rahman, C.V. Ramana, Impedance spectroscopic characterization of gadolinium substituted cobalt ferrite ceramics. J. Appl. Phys. 116(16), 164108 (2014)

    Article  ADS  Google Scholar 

  45. Y. D. Kolekar, L. J. Sanchez, and C. V. Ramana, Dielectric relaxations and alternating current conductivity in manganese substituted cobalt ferrite. J. Appl. Phys., 115(14), 2014

  46. B.V. Bhise, V.C. Mahajan, M.G. Patil, S.D. Lotke, S.A. Patil, Electrical-Properties Of Mn2-Zn FerriteS(TI4+ Substituted NI). Indian J. Pure Appl. Phys. 33(8), 459–462 (1995)

    Google Scholar 

  47. R. Valenzuela, Magnetic Ceramics (Cambridge University Press, Cambridge, 1994)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebtesam E. Ateia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ateia, E.E., Abdelmaksoud, M.K., Arman, M.M. et al. Comparative study on the physical properties of rare-earth-substituted nano-sized CoFe2O4. Appl. Phys. A 126, 91 (2020). https://doi.org/10.1007/s00339-020-3282-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3282-5

Keywords

Navigation