Skip to main content
Log in

Humidity sensor applications based on mesopores LaCoO3

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Humidity sensor plays a pivotal role in determining the quality of products and the precision of instruments. In order to measure and control humidity, LaCoO3 mesopores sensor was prepared by a modified citrate technique. The sample was characterized by X-ray diffraction, Field emission scanning electron microscopy, High resolution transmission electron micrographs, Energy dispersive X-ray spectroscopy and Brunauer–Emmet–Teller. LaCoO3 exhibits rhombohedral distorted perovskite crystal structure with R3c space group. The humidity-sensing properties were investigated in a wide range of working humidity (11–97% RH) and frequency (100 Hz–100 kHz). The obtained results confirm that the optimum measuring frequency is 1 kHz. A great advantage of LaCoO3 is its porosity, which is essential for a humidity sensor. These pores serve as humidity adsorption sites. Another advantage is its high resistivity, which is reduced by approximately eight times its normal magnitude with increasing the surrounding humidity. The average crystallite size and surface area of the sample are 12.88 nm and 154.125 m2/g respectively. According to VSM results, the hysteresis loop of the sample indicates its paramagnetic nature. Furthermore, the ferroelectric hysteresis loop, that was observed at room temperature, implies the antiferroelectric nature of LaCoO3 nanoparticles. The obtained data confirms that the LaCoO3 sample is very sensitive to humidity and can be commercially used as a humidity sensing element.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. N.Q. Minh, J. Am. Ceram. Soc. 76, 563 (1993)

    Article  CAS  Google Scholar 

  2. T. Inoue, N. Seki, K. Eguchi, H. Arai, J. Electrochem. Soc. 137, 2523 (1990)

    Article  CAS  Google Scholar 

  3. C.B. Alcock, R.C. Doshi, Y. Shea, Solid State Ionics 51, 281 (1992)

    Article  CAS  Google Scholar 

  4. S. Mortazavi-Derazkola, S. Zinatloo-Ajabshir, M. Salavati-Niasari, J. Mater. Sci. 26, 5658–5667 (2015)

    CAS  Google Scholar 

  5. C. Martin, A. Maignan, D. Pelloquin, N. Nguyen, B. Raveau, Appl. Phys. Lett. 71, 1421 (1997)

    Article  CAS  Google Scholar 

  6. R. Sorita, T. Kawano, Sens. Actuators B 40, 29–32 (1997)

    Article  CAS  Google Scholar 

  7. E.L. Brosha, R. Mukundan, D.R. Brown, F.H. Garzon, J.H. Visser, M. Zanini, Z. Zhou, E.M. Logothetis, Sens. Actuators B 69, 171–182 (2000)

    Article  CAS  Google Scholar 

  8. T. Fujioka, S. Kusanagi, N. Yamaga, Y. Watabe, K. Doi, T. Inoue, T. Hatai, K. Sato, A. Takemoto, D. Kouzeki, Chem. Sens. Technol. 5, 65 (1994)

    Google Scholar 

  9. D.D. Lee, A.V. Salker, N.J. Choi, J.H. Kwak, B.S. Joo, Sens. Actuators B 106, 461–467 (2005)

    Article  CAS  Google Scholar 

  10. A. Taskin, A.N. Lavrov, Y. Ando, Phys. Rev. B 71, 134414 (2005)

    Article  CAS  Google Scholar 

  11. I.A. Nekrasov, S.V. Streltsov, M.A. Korotin, V.I. Anisimov, Phys. Rev. B 68, 235113 (2003)

    Article  CAS  Google Scholar 

  12. T. Ito, Q.W. Zhang, F. Saito, Synthesis of Perovskite-type lanthanum cobalt oxide nanoparticles by means of mechanochemical treatment. Powder Technol. 143, 170–173 (2004)

    Article  CAS  Google Scholar 

  13. D.W. Johnson Jr., P.K. Gallagher, Reactive powders from solution, in Ceramic Processing Before Firing, ed. by G.Y. Onoda, L.L. Hench (Wiley, Hoboken, 1978)

    Google Scholar 

  14. M. Kumar, S. Srikanth, B. Ravikumar, T.C. Alex, S.K. Das, Synthesis of pure and Sr-doped LaGaO3, LaFeO3 and LaCoO3 and Sr, Mg-doped LaGaO3 for ITSOFC application using different wet chemical routes. Mater. Chem. Phys. 113, 803–815 (2009)

    Article  CAS  Google Scholar 

  15. X. Li, H.B. Zhang, S.J. Li, W. Fan, M.Y. Zhao, IR transmission spectra of nanocrystalline powder materials of the composite oxides La1−xSrxFe1−yCoyO3 with the perovskite structure. Mater. Chem. Phys. 41, 41–45 (1995)

    Article  CAS  Google Scholar 

  16. S. Zinatloo-Ajabshir, M.S. Morassaei, M. Salavati-Niasari, J. Clean. Prod. 222, 103–110 (2019)

    Article  CAS  Google Scholar 

  17. C.Y. Chang, Study on the correlation between humidity and material strains in separable micro humidity sensor design. Sensors (Basel). 17(5), 1066 (2017)

    Article  Google Scholar 

  18. A. Din, K. Akhtar, K.S. Karimov, N. Fatima, A.M. Asiri, M.I. Khan, S.B. Khan, J. Mol. Liq. 237, 266 (2017)

    Article  CAS  Google Scholar 

  19. T.A. Blank, L.P. Eksperiandova, K.N. Belikov, Recent trends of ceramic humidity sensors development: a review. Sens. Actuators B 228, 416–442 (2016)

    Article  CAS  Google Scholar 

  20. S. Yu, H. Zhang, C. Chen, C. Lin, Sens. Actuators B 287, 526 (2019)

    Article  CAS  Google Scholar 

  21. M. Shojaee, S. Nasresfahani, M.K. Dordane, M.H. Sheikhi, Sens. Actuators A 279, 448 (2018)

    Article  CAS  Google Scholar 

  22. R. Guo, W. Tang, C. Shen, X. Wang, Comput. Mater. Sci. 111, 289 (2016)

    Article  CAS  Google Scholar 

  23. D. Zhang, H. Chang, P. Li, R. Liu, Q. Xue, Sens. Actuators B 225, 233 (2016)

    Article  CAS  Google Scholar 

  24. C. Ru, Y. Gu, Z. Li, Y. Duan, Z. Zhuang, H. Na, C. Zhao, J. Electroanal. Chem. 833, 418 (2019)

    Article  CAS  Google Scholar 

  25. Y. Kumar, A. Sharma, P.M. Shirage, Shape-controlled CoFe2O4 nanoparticles as an excellent material for humidity sensing. RSC Adv. 7, 55778–55785 (2017)

    Article  CAS  Google Scholar 

  26. E.E. Ateia, A.T. Mohamed, Nonstoichiometry and phase stability of Al and Cr substituted Mg ferrite nanoparticles synthesized by citrate method. J. Magn. Magn. Mater. 426, 217–224 (2017)

    Article  CAS  Google Scholar 

  27. M.A. Malana, R.B. Qureshi, M.N. Ashiq, M.F. Ehsan, Synthesis, structural, magnetic and dielectric characterizations of molybdenum doped calcium strontium M-type hexaferrites. Ceram. Int. 42, 2686–2692 (2016)

    Article  CAS  Google Scholar 

  28. R. Andoulsi, K. Horchani-Naifer, M. Férid, Effect of the preparation route on the structure and microstructure of LaCoO3. Chem. Pap. 68(5), 608–613 (2014)

    Article  CAS  Google Scholar 

  29. P. Femina, P. Sanjay, LaCoO3 perovskite catalysts for the environmental application of Auto motive CO oxidation. Res. J. Recent Sci. 1, 178–184 (2012)

    Google Scholar 

  30. E.E. Ateia, M.K. Abdelamksoud, M.A. Rizk, Improvement of the physical properties of novel (1–x) CoFe2O4 + (x) LaFeO3 nanocomposites for technological applications. J. Mater. Sci. (2017). https://doi.org/10.1007/s10854-017-7567-1

    Article  Google Scholar 

  31. R.D. Shanon, Acta Crystallogr. Sect. A. 32, 751–767 (1976)

    Article  Google Scholar 

  32. A. Sánchez-Coronilla, J. Navas, J.J. Gallardo, E.I. Martín, D.D. los Santos et al., Hybrid Perovskite, CH3NH3PbI3, for solar applications: an experimental and theoretical analysis of substitution in A and B sites. J. Nanomater. 10 (2017)

  33. C. Li, X. Lu, W. Ding, L. Feng, Y. Gao, Z. Guo, Formability of ABX 3 (X = F, Cl, Br, I) halide perovskites. Acta Crystallogr. Sect. B 64, 702–707 (2008)

    Article  CAS  Google Scholar 

  34. E.E. Ateia, E. Takla, A.T. Mohamed, Physical and magnetic properties of (Ba/Sr) substituted magnesium nano ferrites. Appl. Phys. A 123, 631 (2017)

    Article  CAS  Google Scholar 

  35. J. Zhao, Y. Liu, X. Li, L. Geyu, L. You, X. Liang, F. Liu, Highly sensitive humidity sensor based on high surface area mesoporous LaFeO3 prepared by a nanocasting route. Sens. Actuators B 181, 802–809 (2013)

    Article  CAS  Google Scholar 

  36. V. Jeseentharani, M. George, B. Jeyaraj, A. Dayalan, K.S. Nagaraja, Synthesis of metal ferrite (MFe2O4, M = Co, Cu, Mg, Ni, Zn) nanoparticles as humidity sensor materials. J. Exp. Nanosci. 8(3), 358–370 (2013)

    Article  CAS  Google Scholar 

  37. Y. Zhu, W. Zhao, H. Chen, J. Shi, A simple one-pot self-assembly route to nanoporous and monodispersed Fe3O4 particles with oriented attachment structure and magnetic property. J. Phys. Chem. C 111, 5281–5285 (2007)

    Article  CAS  Google Scholar 

  38. M.J. Molaei, A. Ataie, S. Raygan et al., Magnetic property enhancement and characterization of nano-structured barium ferrite by mechano-thermal treatment. Mater. Charact. 63, 83–89 (2012)

    Article  CAS  Google Scholar 

  39. L. da Conceição, C.R.B. Silva, N.F.P. Ribeiro, M.M.V.M. Souza, Influence of the synthesis method on the porosity, microstructure and electrical properties of La0.7Sr0.3MnO3 cathode materials. Mater. Charact. 60(12), 1417–1423 (2009)

    Article  CAS  Google Scholar 

  40. E.E. Ateia, F.S. Soliman, Multiferroic properties of Gd/Er doped chromium ferrite nano sized particles synthesized by citrate auto combustion method. Mater. Sci. Eng. B 244, 29–37 (2019)

    Article  CAS  Google Scholar 

  41. H.L.B. Boström, M.S. Senn, A.L. Goodwin, Recipes for improper ferroelectricity in molecular perovskites. Nat. Commun. 9(1), 2380 (2018)

    Article  CAS  Google Scholar 

  42. P. Norby, I.G. Krogh Andersen, E. Krogh Andersen, N.H. Andersen, J. Solid State Chem. 119, 191–196 (1995)

    Article  CAS  Google Scholar 

  43. J.B.A.A. Elemans, B. Van Laar, K.R. Van Der Veen, B.O. Loopstra, J. Solid State Chem. 3, 238–242 (1971)

    Article  CAS  Google Scholar 

  44. J.A. Alonso, M.J. Martinez-Lope, M.T. Casais, M.T. Fernandez-Diaz, Inorg. Chem. 39, 917–923 (2000)

    Article  CAS  Google Scholar 

  45. S.N. Patil, A.M. Pawar, S.K. Tilekar, B.P. Ladgaonkar, Investigation of magnesium substituted nano particle zinc ferrites forrelative humidity sensors. Sens. Actuators A 244, 35–43 (2016)

    Article  CAS  Google Scholar 

  46. N. Rezlescu, E. Rezlescu, P.D. Popa, F. Tudorache, A model of humidity sensor with a Mg-based ferrite. J. Optoelectron. Adv. Mater. 7(2), 907–910 (2005)

    CAS  Google Scholar 

  47. S.N. Patil, A.M. Pawar, J.D. Deshpande, B.P. Ladgaonkar, Comparative study of ferrite based humidity sensor for smart sensor module design. Int. Res. J. Sci. Eng. A1, 203–209 (2017)

    Google Scholar 

  48. S. Rajmohan, A. Manikandan, V. Jeseentharani, A. Antony, J. Pragasam, Simple co-precipitation synthesis and characterization studies of La1−xNixVO3 perovskites nanostructures for humidity sensing applications. J. Nanosci. Nanotechnol. 16, 1650–1655 (2016)

    Article  CAS  Google Scholar 

  49. Z. Wang, C. Chen, T. Zhang et al., Humidity sensitive properties of K+-doped nanocrystalline LaCo0.3Fe0.7O3. Sens. Actuators B 126(2), 678–683 (2007)

    Article  CAS  Google Scholar 

  50. V. Jeseentharani, M. George, B. Jeyaraj, A. Dayalan, K.S. Nagaraja, Synthesis of metal ferrite (MFe2O4, M = Co, Cu, Mg, Ni, Zn) nanoparticles as humidity sensor materials. J. Exp. Nanosci. (2012). https://doi.org/10.1080/17458080.2012.690893

    Article  Google Scholar 

  51. A.S. Pawbake, R. Waykar, D.J. Late, S.R. Jadkar, A.C.S. Appl, Mater. Interfaces. 5, 3359–3365 (2016)

    Article  CAS  Google Scholar 

  52. P.K. Kannan, D.J. Late, H. Morgan, C.S. Rout, Nanoscale. 7, 13293–13312 (2015)

    Article  CAS  Google Scholar 

  53. V. Jeseentharani, L. Reginamary, B. Jeyaraj, A. Dayalan, K.S. Nagaraja, Nanocrystalline spinel NixCu0.82xZn0.2Fe2O4: a novel material for humidity sensing. J. Mater. Sci. 47, 3529–3534 (2012)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amira T. Mohamed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ateia, E.E., Mohamed, A.T. & Morsy, M. Humidity sensor applications based on mesopores LaCoO3. J Mater Sci: Mater Electron 30, 19254–19261 (2019). https://doi.org/10.1007/s10854-019-02284-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02284-y

Navigation