Skip to main content
Log in

Photocatalytic and antibacterial potential of silver nanoparticles derived from pineapple waste: process optimization and modeling kinetics for dye removal

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

Green chemistry offers several benefits over other synthesis routes of nanoparticles due to their eco-friendly attributes during their formulation as well as application stages. In the present study, an aqueous extract of Ananas comosus (Pineapple) peel waste was successfully exploited for the synthesis of ultra small (average size 14–20 nm) silver nanoparticles (AgNPs) without adding any reducing or stabilizing agents. Two major factors, i.e., concentration ratio between silver ion precursor versus peel extract and synthesis pH were found to be influential for achieving monodispersed and stable AgNPs. Biogenic AgNPs adorned with natural moieties demonstrated good photocatalytic activity against methylene blue (MB) dye under sunlight illumination for various conditions. The process variable, e.g., solution pH, initial MB concentration and contact time were optimized using response surface methodology (RSM) based on three levels Box-Behnken design. A maximum MB removal of 98.04% was achieved at optimized values of 9.96 pH, 40 ppm initial dye concentration and 173 min of contact time. The kinetics of MB removal was best fitted to its first order kinetic model (R2 = 0.996) in concurrence with intraparticle diffusion-mediated adsorption. AgNPs were also found to be effective to kill pathogenic bacterial strains, Pseudomonas aeruginosa and Bacillus subtilis as characterized from zone of inhibition (ZoI) and viability tests. Undergoing photochemical reactions, the generation of reactive oxygen species (ROS) was elucidated as the major mechanism of AgNPs’ toxicity modulating membrane permeability. This strategy is not only economically viable and environmentally benign, synthesized AgNPs were capable to remove methylene blue dye almost completely under ambient conditions through solar energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agnihotri S, Dhiman NK (2017) Development of nano-antimicrobial biomaterials for biomedical applications. In: Tripathi A, Melo JS (eds) Advances in biomaterials for biomedical applications. Springer, Singapore, pp 479–545. https://doi.org/10.1007/978-981-10-3328-5_12

    Chapter  Google Scholar 

  • Agnihotri S, Mukherji S, Mukherji S (2012) Antimicrobial chitosan–PVA hydrogel as a nanoreactor and immobilizing matrix for silver nanoparticles. Appl Nanosci 2(3):179–188

    Article  CAS  Google Scholar 

  • Agnihotri S, Mukherji S, Mukherji S (2013) Immobilized silver nanoparticles enhance contact killing and show highest efficacy: elucidation of the mechanism of bactericidal action of silver. Nanoscale 5(16):7328–7340. https://doi.org/10.1039/C3nr00024a

    Article  CAS  Google Scholar 

  • Agnihotri S, Mukherji S, Mukherji S (2014) Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv 4(8):3974–3983

    Article  CAS  Google Scholar 

  • Agnihotri S, Bajaj G, Mukherji S, Mukherji S (2015) Arginine-assisted immobilization of silver nanoparticles on ZnO nanorods: an enhanced and reusable antibacterial substrate without human cell cytotoxicity. Nanoscale 7(16):7415–7429

    Article  CAS  Google Scholar 

  • Agnihotri S, Dhiman NK, Tripathi A (2018) Antimicrobial surface modification of polymeric biomaterials In: Tiwari A (ed) Handbook of antimicrobial coatings. Elsevier, New York, pp 435–486. https://doi.org/10.1016/B978-0-12-811982-2.00020-2

    Chapter  Google Scholar 

  • Akerdi AG, Bahrami SH, Arami M, Pajootan E (2016) Photocatalytic discoloration of Acid Red 14 aqueous solution using titania nanoparticles immobilized on graphene oxide fabricated plate. Chemosphere 159:293–299

    Article  CAS  Google Scholar 

  • Akhtar MS, Panwar J, Yun Y-S (2013) Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustain Chem Eng 1(6):591–602. https://doi.org/10.1021/sc300118u

    Article  CAS  Google Scholar 

  • Awazu K, Fujimaki M, Rockstuhl C, Tominaga J, Murakami H, Ohki Y, Yoshida N, Watanabe T (2008) A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. J Am Chem Soc 130(5):1676–1680. https://doi.org/10.1021/ja076503n

    Article  CAS  Google Scholar 

  • Ayad MM, El-Nasr AA (2010) Adsorption of cationic dye (Methylene blue) from water using polyaniline nanotubes base. J Phys Chem C 114(34):14377–14383. https://doi.org/10.1021/jp103780w

    Article  CAS  Google Scholar 

  • Bharti S, Agnihotri S, Mukherji S, Mukherji S (2015) Effectiveness of immobilized silver nanoparticles in inactivation of pathogenic bacteria. J Environ Res Dev 9(3A):849–856

    CAS  Google Scholar 

  • Forgacs E, Cserhati T, Oros G (2004) Removal of synthetic dyes from wastewaters: a review. Environ Int 30(7):953–971

    Article  CAS  Google Scholar 

  • Ginimuge PR, Jyothi SD (2010) Methylene blue: revisited. J Anaesthesiol Clin Pharmacol 26(4):517–520

    Google Scholar 

  • Hai FI, Yamamoto K, Fukushi K (2007) Hybrid treatment systems for dye wastewater. Crit Rev Environ Sci Technol 37(4):315–377

    Article  CAS  Google Scholar 

  • Hao OJ, Kim H, Chiang P-C (2000) Decolorization of wastewater. Crit Rev Environ Sci Technol 30(4):449–505. https://doi.org/10.1080/10643380091184237

    Article  CAS  Google Scholar 

  • He S, Yao J, Jiang P, Shi D, Zhang H, Xie S, Pang S, Gao H (2001) Formation of silver nanoparticles and self-assembled two-dimensional ordered superlattice. Langmuir 17(5):1571–1575

    Article  CAS  Google Scholar 

  • Hogan NJ, Urban AS, Ayala-Orozco C, Pimpinelli A, Nordlander P, Halas NJ (2014) Nanoparticles heat through light localization. Nano Lett 14(8):4640–4645

    Article  CAS  Google Scholar 

  • Hossain MA, Rahman SM (2011) Total phenolics, flavonoids and antioxidant activity of tropical fruit pineapple. Food Res Int 44(3):672–676

    Article  CAS  Google Scholar 

  • Kasuya A, Sivamohan R, Barnakov YA, Dmitruk IM, Nirasawa T, Romanyuk VR, Kumar V, Mamykin SV, Tohji K, Jeyadevan B (2004) Ultra-stable nanoparticles of CdSe revealed from mass spectrometry. Nat Mater 3(2):99

    Article  CAS  Google Scholar 

  • Khan S, Malik A (2018) Toxicity evaluation of textile effluents and role of native soil bacterium in biodegradation of a textile dye. Environ Sci Pollut Res 25(5):4446–4458. https://doi.org/10.1007/s11356-017-0783-7

    Article  CAS  Google Scholar 

  • Kora AJ, Beedu SR, Jayaraman A (2012) Size-controlled green synthesis of silver nanoparticles mediated by gum ghatti (Anogeissus latifolia) and its biological activity. Org Med Chem Lett 2:17–17. https://doi.org/10.1186/2191-2858-2-17

    Article  CAS  Google Scholar 

  • Koyani RD, Sanghvi GV, Sharma RK, Rajput KS (2013) Contribution of lignin degrading enzymes in decolourisation and degradation of reactive textile dyes. Int Biodeterior Biodegrad 77:1–9

    Article  CAS  Google Scholar 

  • Lee KJ, Jun BH, Choi J, Lee YI, Joung J, Oh YS (2007) Environmentally friendly synthesis of organic-soluble silver nanoparticles for printed electronics. Nanotechnology 18(33):335601

    Article  Google Scholar 

  • Leng K, Mai W, Zhang X, Liu R, Lin X, Huang J, Lou H, Xie Y, Fu R, Wu D (2018) Construction of functional nanonetwork-structured carbon nitride with Au nanoparticle yolks for highly efficient photocatalytic applications. Chem Commun 54:7159–7162. https://doi.org/10.1039/C8CC03095B

    Article  CAS  Google Scholar 

  • Li Y, Zhang W, Niu J, Chen Y (2012) Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano 6(6):5164–5173

    Article  CAS  Google Scholar 

  • Li X, Jin X, Zhao N, Angelidaki I, Zhang Y (2017) Novel bio-electro-Fenton technology for azo dye wastewater treatment using microbial reverse-electrodialysis electrolysis cell. Bioresour Technol 228:322–329. https://doi.org/10.1016/j.biortech.2016.12.114

    Article  CAS  Google Scholar 

  • Lin X, Liang Y, Lu Z, Lou H, Zhang X, Liu S, Zheng B, Liu R, Fu R, Wu D (2017) Mechanochemistry: a green, activation-free and top-down strategy to high-surface-area carbon materials. ACS Sustain Chem Eng 5(10):8535–8540

    Article  CAS  Google Scholar 

  • Lokesh K, Sivakiran R (2014) Biological methods of dye removal from textile effluents—a review. J Biochem Technol 3(5):177–180

    Google Scholar 

  • Mittal AK, Chisti Y, Banerjee UC (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31(2):346–356. https://doi.org/10.1016/j.biotechadv.2013.01.003

    Article  CAS  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parishcha R, Ajaykumar P, Alam M, Kumar R (2001) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1(10):515–519

    Article  CAS  Google Scholar 

  • Mukherjee P, Roy M, Mandal B, Dey G, Mukherjee P, Ghatak J, Tyagi A, Kale S (2008) Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology 19(7):075103

    Article  CAS  Google Scholar 

  • Mukherji S, Ruparelia J, Agnihotri S (2012) Antimicrobial activity of silver and copper nanoparticles: variation in sensitivity across various strains of bacteria and fungi. In: Cioffi N, Rai M (eds) Nano-antimicrobials: progress and prospects. Springer-Verlag, Berlin Heidelberg, pp 225–251

    Chapter  Google Scholar 

  • Nadagouda MN, Iyanna N, Lalley J, Han C, Dionysiou DD, Varma RS (2014) Synthesis of silver and gold nanoparticles using antioxidants from blackberry, blueberry, pomegranate, and turmeric extracts. ACS Sustain Chem Eng 2(7):1717–1723. https://doi.org/10.1021/sc500237k

    Article  CAS  Google Scholar 

  • Peng S, McMahon JM, Schatz GC, Gray SK, Sun Y (2010) Reversing the size-dependence of surface plasmon resonances. Proc Natl Acad Sci USA 107(33):14530–14534. https://doi.org/10.1073/pnas.1007524107

    Article  Google Scholar 

  • Peretyazhko TS, Zhang Q, Colvin VL (2014) Size-controlled dissolution of silver nanoparticles at neutral and acidic pH conditions: kinetics and size changes. Environ Sci Technol 48(20):11954–11961. https://doi.org/10.1021/es5023202

    Article  CAS  Google Scholar 

  • Raveendran P, Fu J, Wallen SL (2003) Completely “green” synthesis and stabilization of metal nanoparticles. J Am Chem Soc 125(46):13940–13941

    Article  CAS  Google Scholar 

  • Rivas Aiello MB, Romero JJ, Bertolotti SG, Gonzalez MnC, Mártire DO (2016) Effect of silver nanoparticles on the photophysics of riboflavin: consequences on the ROS generation. J Phys Chem C 120(38):21967–21975. https://doi.org/10.1021/acs.jpcc.6b06385

    Article  CAS  Google Scholar 

  • Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77(3):247–255

    Article  CAS  Google Scholar 

  • Sahoo C, Gupta AK (2012) Optimization of photocatalytic degradation of methyl blue using silver ion doped titanium dioxide by combination of experimental design and response surface approach. J Hazard Mater 215–216:302–310. https://doi.org/10.1016/j.jhazmat.2012.02.072

    Article  CAS  Google Scholar 

  • Saraswaty V, Risdian C, Primadona I, Andriyani R, Andayani DGS, Mozef T (2017) Pineapple peel wastes as a potential source of antioxidant compounds. IOP Conf Ser Earth Environ Sci 60(1):012013

    Article  Google Scholar 

  • Saratale RG, Karuppusamy I, Saratale GD, Pugazhendhi A, Kumar G, Park Y, Ghodake GS, Bhargava RN, Banu JR, Shin HS (2018) A comprehensive review on green nanomaterials using biological systems: recent perception and their future applications. Colloids Surf B Biointerfaces 170(1):20–35. https://doi.org/10.1016/j.colsurfb.2018.05.045

    Article  CAS  Google Scholar 

  • Shanker U, Rani M, Jassal V (2017) Degradation of hazardous organic dyes in water by nanomaterials. Environ Chem Lett 15(4):623–642. https://doi.org/10.1007/s10311-017-0650-2

    Article  CAS  Google Scholar 

  • Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interf 145(1–2):83–96

    Article  CAS  Google Scholar 

  • Sharma VK, Filip J, Zboril R, Varma RS (2015) Natural inorganic nanoparticles—formation, fate, and toxicity in the environment. Chem Soc Rev 44(23):8410–8423. https://doi.org/10.1039/C5CS00236B

    Article  CAS  Google Scholar 

  • Tayade RJ, Natarajan TS, Bajaj HC (2009) Photocatalytic degradation of methylene blue dye using ultraviolet light emitting diodes. Ind Eng Chem Res 48(23):10262–10267. https://doi.org/10.1021/ie9012437

    Article  CAS  Google Scholar 

  • Thanh NTK, Maclean N, Mahiddine S (2014) Mechanisms of nucleation and growth of nanoparticles in solution. Chem Rev 114(15):7610–7630. https://doi.org/10.1021/cr400544s

    Article  CAS  Google Scholar 

  • Tokitomo Y, Steinhaus M, Buttner A, Schieberle P (2005) Odor-active constituents in fresh pineapple (Ananas comosus [L.] Merr.) by quantitative and sensory evaluation. Biosci Biotechnol Biochem 69(7):1323–1330

    Article  CAS  Google Scholar 

  • Vikrant K, Giri BS, Raza N, Roy K, Kim KH, Rai BN, Singh RS (2018) Recent advancements in bioremediation of dye: current status and challenges. Bioresour Technol 253:355–367. https://doi.org/10.1016/j.biortech.2018.01.029

    Article  CAS  Google Scholar 

  • Wei C-B, Liu S-H, Liu Y-G, Lv L-L, Yang W-X, Sun G-M (2011) Characteristic aroma compounds from different pineapple parts. Molecules 16(6):5104–5112

    Article  CAS  Google Scholar 

  • Zhang W, Wu CW (2014) Dyeing of multiple types of fabrics with a single reactive azo disperse dye. Chem Pap 68(3):330–335. https://doi.org/10.2478/s11696-013-0444-3

    Article  CAS  Google Scholar 

Download references

Acknowledgements

DS extends his grateful thanks to DST-SERB for the financial assistance as JRF. This work was supported as a Start Up Research Grant (Young Scientist) by the Department of Science and Technology (DST-SERB) New Delhi, India under the Project Grants Code: YSS/2015/001599, dated 23.03.2016 in Engineering Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shekhar Agnihotri.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 558 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agnihotri, S., Sillu, D., Sharma, G. et al. Photocatalytic and antibacterial potential of silver nanoparticles derived from pineapple waste: process optimization and modeling kinetics for dye removal. Appl Nanosci 8, 2077–2092 (2018). https://doi.org/10.1007/s13204-018-0883-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-018-0883-9

Keywords

Navigation