Skip to main content
Log in

Scanning electron microscope evidence for diatom uptake by two Antarctic sponges

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Scanning electron microscopy (SEM) investigation of two Antarctic sponges, Phorbas glaberrima and Tedania charcoti, showed that the exopinacoderm effects a direct uptake of benthic diatoms which settle on the sponge surface. In P. glaberrima, planktonic diatoms were also observed penetrating through the inhalant system, the primary way of feeding in sponges. Benthic diatoms which accumulate in the mesohyl underneath the exopinacoderm help to strengthen the sponge cortex and may be an alimentary source during oligotrophic periods in the Antarctic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barry JP, Dayton PK (1988) Current patterns in McMurdo Sound, Antarctica and their relationship to local biotic communities. Polar Biol. 8:367–376

    Google Scholar 

  • Barthel D, Gutt J (1992) Sponge associations in the eastern Weddell Sea. Antarct Sci 4 (2):137–150

    Google Scholar 

  • Bavestrello G, Cattaneo-Vietti R, Pansini M (1991) An ecophysiological and biochemical approach to the study of Antarctic sponges. Nat Sci Com Ocean Camp 1989–90, Data Rep 1:343–345

    Google Scholar 

  • Bullivant JS (1967) Ecology of the Ross Sea benthos. N Z Oceanogr Inst Mem 32:49–75

    Google Scholar 

  • Cox G, Larkum AWD (1983) A diatom apparently living in symbiosis with a sponge. Bull Mar Sci 33 (4):943–945

    Google Scholar 

  • Dayton PK, Robilliard GA, Paine RT, Dayton LB, (1974) Biological accomodation in the benthic community of McMurdo Sound, Antarctica. Ecol Monogr 44(1):105–128

    Google Scholar 

  • Diaz JP (1979) Variations, différenciations et fonctions des catégories cellulaires de la démosponge d'eau saumâtres, Suberites massa Nardo, au cours du cycle biologique annuel et dans des conditions expérimentales. Thesis, University of Science and Technology Languedoc, pp 1–332

    Google Scholar 

  • Gleitz M, Thomas DN (1992) Physiological responses of a small Antarctic diatom (Chaetoceros sp.) to simulated environmental constraints associated with sea-ice formation. Mar Ecol Prog Ser 88:271–278

    Google Scholar 

  • Harrison FW (1972) The nature and role of the basal pinacoderm of Corvomeyenia carolensis Harrison (Porifera, Spongillidae). A histochemical and developmental study. Hydrobiologia 39:495–508

    Google Scholar 

  • Kilian EF (1952) Wasserströmung und Nahrungsaufnahme beim Süsswasserschwamm Ephydatia fluviatilis. Z Vgl Physiol 34:407–447

    Google Scholar 

  • Langenbruch P-F, Simpson TL, Scalera Liaci L (1985) Body structure of marine sponges. III. The structure of the choanocyte chambers in Petrosia ficiformis (Porifera, Demospongiae). Zoomorphology 105:383–387

    Google Scholar 

  • Lévi C (1965) La microscopie électronique et l'étude des éponges. Atti Semin Stud Biol Bari II:109–121

    Google Scholar 

  • Matsuda O, Ishikawa S, Kawaguchi K (1987) Seasonal variations of downward flux of particulate organic matter under Antarctic fast ice. Proc NIPR Symp Polar Biol 1:23–34

    Google Scholar 

  • Reiswig HM (1971) Particle feeding in natural populations of three marine demosponges. Biol Bull 141:568–591

    Google Scholar 

  • Sarà M (1971) Ultrastructural aspects of the symbiosis between two species of the genus Aphanocapsa (Cyanophyceae) and Ircinia (Demospongiae). Mar Biol 11:214–221

    Google Scholar 

  • Sarà M, Balduzzi A, Barbieri M, Bavestrello G, Burlando B (1992) Biogeographic traits and checklist of Antarctic demosponges. Polar Biol 12:559–585

    Google Scholar 

  • Simpson TL (1963) The biology of the marine sponge Microciona prolifera (Ellis and Solander). I. A study of cellular function and differentiation. J Exp Zool 154:135–152

    Google Scholar 

  • Simpson TL (1968) The structure and function of sponge cells: new criteria for the taxonomy of Poecilosclerid sponges (Demospongiae). Bull Peabody Mus Nat Hist (Yale Univ) 25:1–141

    Google Scholar 

  • Terragawa CK (1986a) Particle transport and incorporation during skeleton formation in a keratose sponge: Dysidea etheria. Biol Bull 170:321–334

    Google Scholar 

  • Terragawa CK (1986b) Sponge dermal membrane morphology: histology of cell-mediated particle transport during skeletal growth. J Morphol 190:335–348

    Google Scholar 

  • Topsent E (1908) Spongiaires. Expédition antarctique française (1903–1905) commandée par le Dr. J. Charcot (Paris) 4:1–37

    Google Scholar 

  • Topsent E (1917) Spongiaires. Deuxième expédition antartique française (1908–1910) commandée par le Dr. J. Charcot. Sc Phys Doc Sci (Paris) 4:1–88

    Google Scholar 

  • Weissenfels N (1976) Bau und Funktion des Süsswasserschwamms Ephydatia fluviatilis L (Porifera). III. Nahrungsaufnahme, Verdauung und Defäkation. Zoomorphology 85:73–88

    Google Scholar 

  • Weissenfels N (1983) Bau und Funktion des Süsswasserschwamms Ephydatia fluviatilis L. (Porifera). X. Der Nachweis des offenen Mesenchyms durch Verfütterung von Bäckerhefe (Saccharomyces cerevisiae). Zoomorphology 100:75–87

    Google Scholar 

  • Weissenfels N (1992) The filtration apparatus for food collection in freshwater sponges (Porifera, Spongillidae). Zoomorphology 112:51–55

    Google Scholar 

  • Wilkinson CR (1979) Nutrient translocation from symbiotic cyanobacteria to coral reef sponges. In: Levi C, Boury-Esnault (eds) Biologie des Spongiares. Colloq Int CNRS 291:373–380

  • Wilkinson CR (1980) Cyanobacteria symbiotic in marine sponges. In: Schwemmler W, Schenk HEA (eds) Endocytobiology, endosymbiosis and cell biology, vol 1. Walter De Gruyter, New York, pp 553–563

    Google Scholar 

  • Wilkinson CR (1983) Net primary productivity in coral reef sponges. Science 219:410–412

    Google Scholar 

  • Wilkinson CR (1987) Interocean differences in size and nutrition of coral reef sponge populations. Science 236:1654–1657

    Google Scholar 

  • Willenz Ph, Van de Vyver G (1982) Endocytosis of latex beads by the exopinacoderm in the fresh water sponge Ephydatia fluviatilis: An in vitro and in situ study in SEM and TEM. J Ultrastruct Res 79:294–306

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaino, E., Bavestrello, G., Cattaneo-Vietti, R. et al. Scanning electron microscope evidence for diatom uptake by two Antarctic sponges. Polar Biol 14, 55–58 (1994). https://doi.org/10.1007/BF00240273

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00240273

Keywords

Navigation