Skip to main content
Log in

Quercetin-grafted chitosan prepared by free radical grafting: characterization and evaluation of antioxidant and antibacterial properties

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Chitosan (CS) is considered a versatile biopolymer with promising applications. However, it is not a good chain-breaking antioxidant due to the lack of H-atom donors. In this work, CS was combined with quercetin (Q), a natural antioxidant, via a free radical-mediated procedure to strengthen the antioxidant capacity. The successful formation of Q-grafted CS (Q-CS) was confirmed by ultraviolet–visible absorbance and Fourier transform infrared spectroscopy. After combination, the obtained Q-CS had a phenolic content of 13.9 mg QE/g Q-CS and showed a lower crystallinity and thermal stability than the native CS. The 2,2-diphenyl-1-picrylhydrazyl, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), superoxide, and hydroxyl radical scavenging activities of Q-CS were higher than those of CS, illustrating that grafting with Q is an available way to improve the antioxidant capacity of CS. In addition, Q-CS showed higher minimal inhibitory concentrations against tested bacteria than CS, suggesting that combining with Q has a negative effect on the antibacterial activity of CS. Our results indicate that Q-CS may have great potential for applications in the fields of food and healthcare.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aelenei N, Popa MI, Novac O, Lisa G, Balaita L (2009) Tannic acid incorporation in chitosan-based microparticles and in vitro controlled release. J Mater Sci Mater Med 20:1095–1102

    Article  CAS  Google Scholar 

  • Aytekin AO, Morimura S, Kida K (2011) Synthesis of chitosan-caffeic acid derivatives and evaluation of their antioxidant activities. J Biosci Bioeng 111:212–216

    Article  CAS  Google Scholar 

  • Benhabiles MS, Salah R, Lounici H, Drouiche N, Goosen MFA, Mameri N (2012) Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocoll 29:48–56

    Article  CAS  Google Scholar 

  • Bukhari SB, Memon S, Mahroof-Tahir M, Bhanger MI (2009) Synthesis, characterization and antioxidant activity copper–quercetin complex. Spectrochim Acta A Mol Biomol Spectrosc 71:1901–1906

    Article  Google Scholar 

  • Chatterjee NS, Panda SK, Navitha M, Asha KK, Anandan R, Mathew S (2015) Vanillic acid and coumaric acid grafted chitosan derivatives: improved grafting ratio and potential application in functional food. J Food Sci Technol 52:7153–7162

    Article  CAS  Google Scholar 

  • Cirillo G, Puoci F, Iemma F, Curcio M, Parisi OI, Spizzirri UG, Altimari I, Picci N (2012) Starch-quercetin conjugate by radical grafting: synthesis and biological characterization. Pharm Dev Technol 17:466–476

    Article  CAS  Google Scholar 

  • Curcio M, Puoci F, Iemma F, Parisi OI, Cirillo G, Spizzirri UG, Picci N (2009) Covalent insertion of antioxidant molecules on chitosan by a free radical grafting procedure. J Agric Food Chem 57:5933–5938

    Article  CAS  Google Scholar 

  • Guo P, Anderson JD, Bozell JJ, Zivanovic S (2016) The effect of solvent composition on grafting gallic acid onto chitosan via carbodiimide. Carbohydr Polym 140:171–180

    Article  CAS  Google Scholar 

  • Hu Q, Luo Y (2016) Polyphenol–chitosan conjugates: synthesis, characterization, and applications. Carbohydr Polym 151:624–639

    Article  CAS  Google Scholar 

  • Hu Q, Wang T, Zhou M, Xue J, Luo Y (2016) In vitro antioxidant-activity evaluation of gallic-acid-grafted chitosan conjugate synthesized by free-radical-induced grafting method. J Agric Food Chem 64:5893–5900

    Article  CAS  Google Scholar 

  • Khan I, Tango CN, Oh D-H (2017) Development and evaluation of chitosan and its derivative for the shelf life extension of beef meat under refrigeration storage. Int J Food Sci Tech 52:1111–1121

    Article  CAS  Google Scholar 

  • Lee DS, Woo JY, Ahn CB, Je JY (2014) Chitosan–hydroxycinnamic acid conjugates: preparation, antioxidant and antimicrobial activity. Food Chem 148:97–104

    Article  CAS  Google Scholar 

  • Lei F, Wang X, Liang C, Yuan F, Gao Y (2014) Preparation and functional evaluation of chitosan-EGCG conjugates. J Appl Polym Sci 131:39732

    Google Scholar 

  • Li J, Zhang M, Zheng T (2009) The in vitro antioxidant activity of lotus germ oil from supercritical fluid carbon dioxide extraction. Food Chem 115:939–944

    Article  CAS  Google Scholar 

  • Liu J, Lu JF, Kan J, Jin CH (2013) Synthesis of chitosan–gallic acid conjugate: structure characterization and in vitro anti-diabetic potential. Int J Biol Macromol 62:321–329

    Article  CAS  Google Scholar 

  • Liu J, Wen XY, Lu JF, Kan J, Jin CH (2014) Free radical mediated grafting of chitosan with caffeic and ferulic acids: structures and antioxidant activity. Int J Biol Macromol 65:97–106

    Article  CAS  Google Scholar 

  • Moreno-Vasquez MJ, Valenzuela-Buitimea EL, Plascencia-Jatomea M, Encinas-Encinas JC, Rodriguez-Felix F, Sanchez-Valdes S, Rosas-Burgos EC, Ocano-Higuera VM, Graciano-Verdugo AZ (2017) Functionalization of chitosan by a free radical reaction: characterization, antioxidant and antibacterial potential. Carbohydr Polym 155:117–127

    Article  CAS  Google Scholar 

  • Ngo D-H, Vo T-S, Ngo D-N, Kang K-H, Je J-Y, Pham HN-D, Byun H-G, Kim S-K (2015) Biological effects of chitosan and its derivatives. Food Hydrocoll 51:200–216

    Article  CAS  Google Scholar 

  • Oliver S, Vittorio O, Cirillo G, Boyer C (2016) Enhancing the therapeutic effects of polyphenols with macromolecules. Polym Chem 7:1529–1544

    Article  CAS  Google Scholar 

  • Pralhad T, Rajendrakumar K (2004) Study of freeze-dried quercetin–cyclodextrin binary systems by DSC, FT-IR, X-ray diffraction and SEM analysis. J Pharm Biomed Anal 34:333–339

    Article  CAS  Google Scholar 

  • Qin YY, Zhang ZH, Li L, Yuan ML, Fan J, Zhao TR (2015) Physio-mechanical properties of an active chitosan film incorporated with montmorillonite and natural antioxidants extracted from pomegranate rind. J Food Sci Technol 52:1471–1479

    Article  CAS  Google Scholar 

  • Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632

    Article  CAS  Google Scholar 

  • Sarbon NM, Sandanamsamy S, Kamaruzaman SF, Ahmad F (2015) Chitosan extracted from mud crab (Scylla olivicea) shells: physicochemical and antioxidant properties. J Food Sci Technol 52:4266–4275

    Article  CAS  Google Scholar 

  • Smith AJ, Kavuru P, Wojtas L, Zaworotko MJ, Shytle RD (2011) Cocrystals of quercetin with improved solubility and oral bioavailability. Mol Pharm 8:1867–1876

    Article  CAS  Google Scholar 

  • Song X, Li J, Wang J, Chen L (2009) Quercetin molecularly imprinted polymers: preparation, recognition characteristics and properties as sorbent for solid-phase extraction. Talanta 80:694–702

    Article  CAS  Google Scholar 

  • Sousa F, Guebitz GM, Kokol V (2009) Antimicrobial and antioxidant properties of chitosan enzymatically functionalized with flavonoids. Process Biochem 44:749–756

    Article  CAS  Google Scholar 

  • Su D, Cheng Y, Liu M, Liu D, Cui H, Zhang B, Zhou S, Yang T, Mei Q (2013) Comparision of piceid and resveratrol in antioxidation and antiproliferation activities in vitro. PLoS ONE 8:e54505

    Article  CAS  Google Scholar 

  • Torres E, Marín V, Aburto J, Beltrán HI, Shirai K, Villanueva S, Sandoval G (2012) Enzymatic modification of chitosan with quercetin and its application as antioxidant edible films. Appl Biochem Microbiol 48:151–158

    Article  CAS  Google Scholar 

  • Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    Article  CAS  Google Scholar 

  • Wang X, Chen Y, Dahmani FZ, Yin L, Zhou J, Yao J (2014) Amphiphilic carboxymethyl chitosan–quercetin conjugate with P-gp inhibitory properties for oral delivery of paclitaxel. Biomaterials 35:7654–7665

    Article  CAS  Google Scholar 

  • Wang W, Sun C, Mao L, Ma P, Liu F, Yang J, Gao Y (2016) The biological activities, chemical stability, metabolism and delivery systems of quercetin: a review. Trends Food Sci Technol 56:21–38

    Article  CAS  Google Scholar 

  • Woo J-Y, Je J-Y (2013) Antioxidant and tyrosinase inhibitory activities of a novel chitosan–phloroglucinol conjugate. Int J Food Sci Tech 48:1172–1178

    Article  CAS  Google Scholar 

  • Woranuch S, Yoksan R (2013) Preparation, characterization and antioxidant property of water-soluble ferulic acid grafted chitosan. Carbohydr Polym 96:495–502

    Article  CAS  Google Scholar 

  • Xie M, Hu B, Wang Y, Zeng X (2014) Grafting of gallic acid onto chitosan enhances antioxidant activities and alters rheological properties of the copolymer. J Agric Food Chem 62:9128–9136

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Hebei Province (No. B2016202111).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingjun Jing.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diao, Y., Yu, X., Zhang, C. et al. Quercetin-grafted chitosan prepared by free radical grafting: characterization and evaluation of antioxidant and antibacterial properties. J Food Sci Technol 57, 2259–2268 (2020). https://doi.org/10.1007/s13197-020-04263-2

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-020-04263-2

Keywords

Navigation