Skip to main content
Log in

Characterization of biofilm production by Pseudomonas fluorescens isolated from refrigerated raw buffalo milk

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Pseudomonas fluorescens can often be isolated from refrigerated raw milk. Two strains of P. fluorescens PL5.4 and PL7.1, isolated from raw buffalo milk, were evaluated for their proteolytic capacity, exopolysaccharide production and biofilm production. Proteolytic activity was observed in both strains. The P. fluorescens PL5.4 strain presented fluorescence in the presence of calcofluor, indicating exopolysaccharide production. Both strains were able to produce biofilm at 7 °C for 72 h. For the biofilm production test on stainless steel, adherent cell counts of up to 7.1, 7.3 and 8.8 log CFU/cm2 at 7, 23 and 30 °C were obtained. Through scanning electron microscopy, it was possible to observe the biofilm produced by the P. fluorescens PL5.4 strain. Proper cleaning and disinfection practices in order are important to reduce bacterial contamination and extend the useful life of raw material and its derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alhede M, Qvortrup K, Liebrechts R, Høiby N, Michael Givskov M, Bjarnsholt T (2012) Combination of microscopic techniques reveals a comprehensive visual impression of biofilm structure and composition. FEMS Immunol Med Microbiol 65:335–342

    Article  CAS  Google Scholar 

  • Al-Shabib NA, Husain FM, Ahmed F, Khan RA, Khan MS, Ansari FA, Alam MZ, Ahmed MA, Khan MS, Mohammad Hassan Baig MH, Khan JM, Shahzad SA, Arshad M, Abdullah Alyousef A, Ahmad I (2018) Low temperature synthesis of superparamagnetic iron oxide (Fe3O4) nanoparticles and their ROS mediated inhibition of biofilm formed by food-associated bacteria. Front Microbiol 9:2567–2576

    Article  Google Scholar 

  • Arslan S, Eyi A, Özdemir F (2011) Spoilage potentials and antimicrobial resistance of Pseudomonas spp. isolated from cheeses. J Dairy Sci 94:5851–5856

    Article  CAS  Google Scholar 

  • Baum MM, Kainović A, O’Keeffe T, Pandita R, McDonald K, Wu S, Webster P (2009) Characterization of structures in biofilms formed by a Pseudomonas fluorescens isolated from soil. BMC Microbiol 9:103. https://doi.org/10.1186/1471-2180-9-103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernardes O (2014) Desafios na produção de leite de búfalas. Anais I Simpósio Brasileiro de Ruminantes Leiteiros (UDILEITE)—Univ. Federal de Uberlândia/FAMEV 33-72

  • Boari CA, Alves MP, Tebaldi VMR, Savian TV, Piccoli RH (2009) Biofilm formation by Aeromonas hydrophila and Staphylococcus aureus on stainless steel using milk and different conditions of cultivation. Food Sci Technol 29:886–895

    Article  Google Scholar 

  • Castro MR, Fernandes MS, Kakubi DY, Kuaye AY (2017) Biofilm formation on stainless steel as a function of time and temperature and control through sanitizers. Int Dairy J 68:9–16

    Article  Google Scholar 

  • Cleto S, Matos S, Kluskens L, Vieira MJ (2012) Characterization of contaminants from a sanitized milk processing plant. PLoS ONE 7:1–8

    Article  Google Scholar 

  • De Jonghe V, Coorevits A, Van Hoorde K, Messens W, Van Landschoot A, De Vos P, Heyndrickx M (2011) Influence of storage conditions on the growth of Pseudomonas species in refrigerated raw milk. Appl Environ Microbiol 77:460–470

    Article  Google Scholar 

  • Goldbeck JC, Victoria FN, Motta AS, Savegnago L, Jacob RG, Perin G, Lenardão EJ, Padilha da Silva W (2014) Bioactivity and morphological changes of bacterial cells after exposure to 3-(pchlorophenyl) thio citronellal. LWT Food Sci Technol 59:813–819

    Article  CAS  Google Scholar 

  • Hrubanova K, Vladislav Krzyzanek V, Nebesarova J, Ruzicka F, Pilat Z, Ota Samek O (2018) Monitoring Candida parapsilosis and Staphylococcus epidermidis biofilms by a combination of scanning electron microscopy and raman spectroscopy. Sensors 18:4089–4107

    Article  Google Scholar 

  • Kives J, Orgaz GB, Rivera-Sen A, Varquez J, Jose San (2005) Interactions in biofilms of Lactococcus lactis subsp. cremoris and Pseudomonas fluorescens cultured in cold UHT milk. J Dairy Sci 88:4165–4171

    Article  CAS  Google Scholar 

  • Koo H, Falsetta ML, Klein MI (2013) The exopolysaccharide matrix. J Den Res 92:1065–1073

    Article  CAS  Google Scholar 

  • Lin H, Shavezipur M, Yousef A, Maleky F (2016) Prediction of growth of Pseudomonas fluorescens in milk during storage under fluctuating temperature. J Dairy Sci 99:1822–1830

    Article  CAS  Google Scholar 

  • Marchand S, De Block J, De Jonghe V, Coorevits A, Heyndrickx M, Herman L (2012) Biofilm formation in milk production and processing environments; influence on milk quality and safety. Compr Rev Food Sci Food Saf 11:133–147

    Article  CAS  Google Scholar 

  • Martins ML, Pinto UM, Riedel K, Vanetti MCD, Mantovani HC, Araújo EF (2014) Lack of AHL-based quorum sensing in Pseudomonas fluorescens isolated from milk. Braz J Microbiol 45:1039–1046

    Article  Google Scholar 

  • Martins ML, Pinto UM, Riedel K, Vanetti MCD (2015) Milk-deteriorating exoenzymes from Pseudomonas fluorescens 041 isolated from refrigerated raw milk. Braz J Microbiol 46:207–217

    Article  CAS  Google Scholar 

  • Moura TM, Campos FS, Caierão J, Franco AC, Roehe P, d’Azevedo PA, Frazzon J, Frazzon APG (2015) Influence of a subinhibitory concentration of vancomycin on the in vitro expression of virulence-related genes in the vancomycin-resistant Enterococcus faecalis. Rev Soc Bras Med Trop 48:617–621

    Article  Google Scholar 

  • Nörnberg MBL, Mentges ML, Silveira ST, Tondo EC, Brandelli A (2011) A psychrotrophic Burkholderia cepacia strain isolated from refrigerated raw milk showing proteolytic activity and adhesion to stainless steel. J Dairy Res 78:257–262

    Article  Google Scholar 

  • Oliveira GB, Favarin L, Luchese RH, McIntosh D (2015) Psychrotrophic bacteria in milk: how much do we really know? Braz J Microbiol 46:313–321

    Article  Google Scholar 

  • Picoli T, Mendes Peter CM, Zani JL, Waller SB, Lopes MG, Boesche KN, Vargas GDA, Hübner SO, Fischer G (2017) Melittin and its potential in the destruction and inhibition of the biofilm formation by Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa isolated from bovine milk. Microbial Pathogen 112:57–62

    Article  CAS  Google Scholar 

  • Piercey MJ, Hingston PA, Hansen LT (2016) Genes involved in Listeria monocytogenes biofilm formation at a simulated food processing plant temperature of 15 C. Int J Food Microbiol 223:63–74

    Article  CAS  Google Scholar 

  • Pinto CLO, Souza LV, Meloni VAS, Bastista CS, Silva R, Martins EMF, Cruz AG, Martins ML (2017) Microbiological quality of Brazilian UHT milk: identification and spoilage potential of spore-forming bacteria. Int J Dairy Technol 71:20–26

    Article  Google Scholar 

  • Puga CH, Orgaz B, SanJose C (2016) Listeria monocytogenes impact on mature or old Pseudomonas fluorescens biofilms during growth at 4 and 20 °C. Front Microbiol 7 https://doi.org/10.3389/fmicb.2016.00134

  • Rossi C, Chaves-López C, Serio A, Goffredo E, Goga BTC, Paparella A (2016) Influence of incubation conditions on biofilm formation by Pseudomonas fluorescens isolated from dairy products and dairy manufacturing plants. Ital J Food Saf 5(5793):154–157

    Google Scholar 

  • Ruaro A, Andrighetto C, Torriani S, Lombardi A (2013) Biodiversity and characterization of indigenous coagulase-negative staphylococci isolated from raw milk and cheese of North Italy. Food Microbiol 34:106–111

    Article  CAS  Google Scholar 

  • Scatamburlo TM, Yamazi AK, Cavicchioli VQ, Pieri FA, Nero LA (2015) Spoilage potential of Pseudomonas species isolated from goat milk. J Dairy Sci 98:759–764

    Article  CAS  Google Scholar 

  • Serrato RV, Sassaki GL, Cruz L, Pedrosa FO, Gorin PAJ, Iacomini M (2006) Culture conditions for the production of an acidic exopolysaccharide by the nitrogen-fixing bacterium Burkholderia tropica. Can J Microbiol 52:489–493

    Article  CAS  Google Scholar 

  • Simões M, Pereira MO, Sillankorva S, Azeredo J, Vieira MJ (2013) The effect of hydrodynamic conditions on the phenotype of Pseudomonas fluorescens biofilms. Biofouling 23(4):249–258

    Article  Google Scholar 

  • Souza EL, Meira QGS, Barbosa IM, Athayde AJAA, Conceição ML, Junior JPS (2014) Biofilm formation by Staphylococcus aureus from food contact surfaces in a meat-based broth and sensitivity to sanitizers. Braz J Microbiol 45:67–75

    Article  Google Scholar 

  • Stepanović S, Vuković D, Dakić I, Savić B, Savić-Vlahovic M (2000) A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods 40:175–179

    Article  Google Scholar 

  • Zhu J, Yan Y, Wang Y, Qu D (2018) Competitive interaction on dual-species biofilm formation by spoilage bacteria, Shewanella baltica and Pseudomonas fluorescens. J Appl Microbiol 126:1175–1186

    Article  Google Scholar 

Download references

Acknowledgements

The Centro de Microscopia e Microánalise (CMM)–UFRGS, Cooperbúfalo and CAPES–Coordenação de Aperfeiçoamento de Pessoal de Nível Superior.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda de Souza da Motta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lauer Cruz, K., de Souza da Motta, A. Characterization of biofilm production by Pseudomonas fluorescens isolated from refrigerated raw buffalo milk. J Food Sci Technol 56, 4595–4604 (2019). https://doi.org/10.1007/s13197-019-03924-1

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-019-03924-1

Keywords

Navigation