Skip to main content
Log in

Influence of the process parameters on osmotic dehydration of mapara (Hypophthalmus edentatus) fillet

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

The effects of temperature, time, pressure and brine concentration were assessed during osmotic dehydration (OD) of H. edentatus fillet. The response surface methodology (RSM) showed that using vacuum during the OD process did not cause a statistically significant change (p > 0.05) on the water loss (WL), solid gain (SG) and water activity (aw). The other factors showed a statistically significant effect (p ≤ 0.05) on at least one of these responses. Through RSM, the following condition could be defined for the OD process: brine concentration at 25 % NaCl, 25 °C, 120 min and atmospheric pressure. The Azuara model was shown to be effective in predicting the WL and SG kinetics during the OD process. The simplified solution of Fick’s second law of diffusion for a slab geometry was used to calculate the average values of apparent diffusion coefficient (Deff), namely 4.73 × 10−10 m2/s for WL and 1.33 × 10−9 m2/s for SG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Al-Kahtani HA, Abu-Tarboush HM, Bajaber AS, Atia M, Abou-Arab AA, El-Mojaddidi MA (1996) Chemical changes after irradiation and post-irradiation storage in tilapia and Spanish mackerel. J Food Sci 61:729–733. doi:10.1111/j.1365-2621.1996.tb12191.x

    Article  CAS  Google Scholar 

  • Alves DG, Barbosa JL Jr, Antonio GC, Murr FEX (2005) Osmotic dehydration of acerola fruit (Malpighia punicifolia L.). J Food Eng 68:99–103. doi:10.1016/j.jfoodeng.2004.05.042

    Article  Google Scholar 

  • AOAC (1997) Official methods of analysis, 16th edn. Association of Official Analytical Chemists, Washington

    Google Scholar 

  • Azuara E, Cortés R, Garcia HS, Beristain CI (1992) Kinetic model for osmotic dehydration and its relationship with Fick’s second law. Int J Food Sci Technol 27:409–418. doi:10.1111/j.1365-2621.1992.tb01206.x

    Article  CAS  Google Scholar 

  • Barat JM, Chiralt A, Fito P (2001) Effect of osmotic solution concentration, temperature and vacuum impregnation pretreatment on osmotic dehydration kinetics of apple slices. Food Sci Technol Int 7:451–456. doi:10.1106/4L77-UPTY-KEAQ-3TIV

    Article  Google Scholar 

  • Boudhrioua N, Djendoubi N, Bellagha S, Kechaou N (2009) Study of moisture and salt transfers during salting of sardine fillets. J Food Eng 94:83–89. doi:10.1016/j.jfoodeng.2009.03.005

    Article  Google Scholar 

  • Chaijan M (2011) Physicochemical changes of tilapia (Oreochromis niloticus) muscle during salting. Food Chem 129:1201–1210. doi:10.1016/j.foodchem.2011.05.110

    Article  CAS  Google Scholar 

  • Connell JJ (1995) Control of fish quality, 4th edn. Fishing News Books, Oxford

    Google Scholar 

  • Corzo O, Bracho N (2007a) Determination of water effective diffusion coefficient of sardine sheets during vacuum pulse osmotic dehydration. LWT – Food Sci Technol 40:1452–1458. doi:10.1016/j.lwt.2006.04.008

    Article  CAS  Google Scholar 

  • Corzo O, Bracho N (2007b) Water effective diffusion coefficient of sardine sheets during osmotic dehydration at different brine concentrations and temperatures. J Food Eng 80:497–502. doi:10.1016/j.jfoodeng.2006.06.008

    Article  Google Scholar 

  • Costa TV, Oshiro LMY, Silva ECS (2010) The potential of the mapará Hypophthalmus spp. (Osteichthyes, Siluriformes) as alternative species for fish culture in amazon. Bol Inst Pesca 36:165–174

    Google Scholar 

  • Crank J (1975) The mathematics of diffusion, 2nd edn. Clarendon, Oxford

    Google Scholar 

  • Espe M, Nortvedt R, Lie Ø, Hafsteinsson H (2001) Atlantic salmon (Salmo salar L.) as raw material for the smoking industry. I: effect of different salting methods on the oxidation of lipids. Food Chem 75:411–416. doi:10.1016/S0308-8146(01)00228-X

    Article  CAS  Google Scholar 

  • Falade KO, Igbeka JC, Ayanwuyi FA (2007) Kinetics of mass transfer, and colour changes during osmotic dehydration of watermelon. J Food Eng 80:979–985. doi:10.1016/j.jfoodeng.2006.06.033

    Article  Google Scholar 

  • Fernandes FAN, Rodrigues S, Gaspareto OCP, Oliveira EL (2006) Optimization of osmotic dehydration of bananas followed by air-drying. J Food Eng 22:188–193. doi:10.1016/j.jfoodeng.2005.05.058

    Article  Google Scholar 

  • Gallart-Jornet L, Barat JM, Rustad T, Erikson U, Escriche I, Fito P (2007) A comparative study of brine salting of Atlantic cod (Gadus morhua) and Atlantic salmon (Salmo salar). J Food Eng 79:261–270. doi:10.1016/j.jfoodeng.2006.01.053

    Article  Google Scholar 

  • Guinazi M, Moreira APB, Salaro AL, Castro FAF, Dadalto M, Sant’Ana HMP (2006) Chemical composition of fresh and frozen storage freshwater fish. Acta Sci Technol 28:119–124

    CAS  Google Scholar 

  • Ito AP, Cavenaghi M, Bertoldo C, Park KJ, Hubinger MD (2007) Influence of pulsed vacuum osmotic dehydration on mass transfer, color and rheological properties of mango slices. Food Sci Technol 27:54–63. doi:10.1590/S0101-20612007000500010

    Google Scholar 

  • Khuri AI, Cornell JA (1996) Response surfaces: designs and analyses, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  • Luzia LA, Sampaio GR, Castellucci CMN, Torres EAFS (2003) The influence of season on the lipid profiles of five commercially important species of Brazilian fish. Food Chem 83:93–97. doi:10.1016/S0308-8146(03)00054-2

    Article  CAS  Google Scholar 

  • Medina-Vivanco ML, Sobral PA, Hubinger MD (2002) Osmotic dehydration of tilapia fillets in small volumes of ternary solutions. Chem Eng J 86:199–205

    Article  CAS  Google Scholar 

  • Monnerat SM, Pizzi TRM, Mauro MA, Menegalli FC (2010) Osmotic dehydration of apples in sugar/salt solutions: concentration profiles and effective diffusion coefficients. J Food Eng 100:604–612. doi:10.1016/j.jfoodeng.2010.05.008

    Article  CAS  Google Scholar 

  • MPA (2011) Ministry of Fisheries and Aquaculture: statistic bulletin of fisheries and aquaculture. http://www.mpa.gov.br/index.php/monitoramento-e-controle/informacoes-e-estatisticas. Accessed 22 Aug 2014

  • Mújica-Paz H, Valdez-Fragoso A, Lopez-Malo A, Palou E, Welti-Chanes J (2002) Impregnation properties of some fruits at vacuum pressure. J Food Eng 56:307–314. doi:10.1016/S0260-8774(02)00155-3

    Article  Google Scholar 

  • Occhino E, Hernando I, Llorca E, Neri L, Pittia P (2011) Effect of vacuum impregnation treatments to improve quality and texture of zucchini (Cucurbita pepo, L). Procedia Food Sci 1:829–835. doi:10.1016/j.profoo.2011.09.125

    Article  Google Scholar 

  • Oliveira NMS, Oliveira WRM, Nascimento LC, Silva JMSF, Vicente E, Fiorini JE (2008) Physical-chemical evaluation of “tilápia” (Oreochromis niloticus) fillets submitted to sanitization. Food Sci Technol 28:83–89. doi:10.1590/S0101-20612008000100013

    CAS  Google Scholar 

  • Osawa CC, Felício PE, Gonçalves LAP (2005) TBA test applied to meats and their products: traditional, modified and alternative methods. Quim Nov. 28:655–663. doi:10.1590/S0100-4042200500040001

  • Panadés G, Fito P, Aguiar Y, Villavicencio MN, Acosta V (2006) Osmotic dehydration of guava: influence of operating parameters on process kinetics. J Food Eng 72:383–389. doi:10.1016/j.jfoodeng.2004.12.020

    Article  Google Scholar 

  • Pigott G, Tucker B (1990) Seafood: effects of technology on nutrition. Marcel Dekker Inc, New York

    Google Scholar 

  • Raoult-Wack AL (1994) Recent advances in the osmotic dehydration of food. Trends Food Sci Technol 5:225–260. doi:10.1016/0924-2244(94)90018-3

    Article  Google Scholar 

  • Rastogi NK, Raghavarao KSMS (1997) Water and solute diffusion coefficients of carrot as a fuction of temperature and concentration. J Food Eng 34:429–440. doi:10.1016/S0260-8774(98)80034-4

    Article  Google Scholar 

  • Ribeiro SCA, Park KJ, Hubinger MD, Ribeiro CFA, Araujo EAF, Tobinaga S (2008) Optimization of the osmotic dehydration of mapará (Hypophthalmus edentatus) fillets by response surface methodology. Food Sci Technol 28:485–492. doi:10.1590/S0101-20612008000200033

    CAS  Google Scholar 

  • Rockland LB, Nishi SK (1980) Influence of water activity on food product quality and stability. Food Technol 34:42–59

    CAS  Google Scholar 

  • Salwin H (1963) Moisture levels required for stability in dehydrated foods. Food Technol 17:1114–1121

    Google Scholar 

  • Schmidt FC, Carciofi BAM, Laurindo JB (2008) Effect of vacuum impregnation on mass transfer during the salting process of chicken breast cuts. Food Sci Technol 28:366–372. doi:10.1590/S0101-20612008000200015

    CAS  Google Scholar 

  • Sereno AM, Moreira D, Martinez E (2001) Mass transfer coefficients during osmotic dehydration of apple single and combined aqueous solution of sugar and salts. J Food Eng 47:43–49. doi:10.1016/S0260-8774(00)00098-4

    Article  Google Scholar 

  • Simões MR, Ribeiro CFA, Ribeiro SCA, Park KJ, Murr FEX (2007) Physicochemical and microbiological composition and yield of thai-style tilapia fillets (Oreochromis niloticus). Food Sci Technol 27:608–613. doi:10.1590/S0101-20612007000300028

    Google Scholar 

  • Souza JS, Medeiros MFD, Magalhães MMA, Rodrigues S, Fernandes FAN (2007) Optimization of osmotic dehydration of tomatoes in a ternary system followed by air-drying. J Food Eng 83:501–509. doi:10.1016/j.jfoodeng.2007.03.038

    Article  CAS  Google Scholar 

  • Tsironi TN, Taoukis PS (2010) Modeling microbial spoilage and quality of gilthead seabream fillets: combined effect of osmotic pretreatment, modified atmosphere packaging, and nisin on shelf life. J Food Sci 75:M243–M251. doi:10.1111/j.1750-3841.2010.01574.x

    Article  CAS  Google Scholar 

  • Vyncke W (1970) Direct determination of the thiobarbituric acid value in trichloroacetic acid extracts of fish as a measure of oxidative rancidity. Fette Seifen Anstrichm 72:1084–1087. doi:10.1002/lipi.19700721218

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank FINEP (Financiadora de Estudos e Projetos) and SEBRAE (Serviço de Apoio às Micro e Pequenas Empresas) for the financial support (028/2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosinelson da Silva Pena.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Almeida Maciel, R., da Cruz Rodrigues, A.M. & da Silva Pena, R. Influence of the process parameters on osmotic dehydration of mapara (Hypophthalmus edentatus) fillet. J Food Sci Technol 53, 676–684 (2016). https://doi.org/10.1007/s13197-015-1999-5

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-015-1999-5

Keywords

Navigation