Skip to main content
Log in

Production of β-galactosidase from streptococcus thermophilus for galactooligosaccharides synthesis

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Efficiency of different methods for disruption of Streptococcus thermophilus cells, isolated from different dairy products, to release β-galactosidase and synthesis of GOS by extracted enzyme using whey supplemented with different concentrations of lactose as a substrate was studied. Unlike most other studies on GOS synthesis which used only one method of cell disruption and only few microbial strains, we compared five different cell disruption methods and used 30 strains of S. thermophilus in order to find out the most effective method and efficient strain for production of β-galactosidase. Appreciable amount of GOS (53.45 gL−1) was synthesized at a lactose concentration of 30 %, using enzyme (10 U mL−1 of reaction medium), extracted from S. thermophilus within a very short incubation time of 5 h at a temperature of 40 °C and pH 6.8. S. thermophilus is heavily employed in the preparation of fermented dairy products but this study extends the use of this organism for the production of GOS, a potential prebiotic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akiyama K, Takase M, Horikoshi K, Okonogi S (2001) Production of galactooligosaccharides from lactose using a β-glucosidase from Thermus sp. Z-1. Biosci Biotechnol Biochem 65:438–441

    Article  CAS  Google Scholar 

  • Anvari M, Khayati G (2011) Submerged yeast fermentation of cheese whey for protein production and nutritional profile analysis. Int J Food Sci Technol 3:122–126

    CAS  Google Scholar 

  • Botina SG, Trenina MA, Tsygankov YD, Sukhodolets VV (2007) Comparison of genotypic and biochemical characteristics of streptococcus thermophilus strains isolated from sour milk products. Appl Biochem Microbiol 43:598–603

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–54

    Article  CAS  Google Scholar 

  • Bury D, Jelen P, Kalab M (2001) Disruption of Lactobacillus delbrueckii ssp. bulgaricus 11842 cells for lactose hydrolysis in dairy products: a comparison of sonication, high-pressure homogenization and bead milling. Innov Food Sci Emerg Technol 2:23–29

    Article  CAS  Google Scholar 

  • Cho YJ, Shin HJ, Bucke C (2003) Purification and biochemical properties of a galactooligosaccharide producing β-galactosidase from Bullera singularis. Biotechnol Lett 25:2107–2111

    Article  CAS  Google Scholar 

  • Choi H, Laleye L, Amantea GF, Simard RE (1997) Release of aminopeptidase from Lactobacillus casei sp. casei by cell disruption in a microfluidizer. Biotechnol Tech 11:451–453

    Article  CAS  Google Scholar 

  • Choi JJ, Oh EJ, Lee YJ, Suh DS, Lee JH, Lee SW, Shin HT, Kwon ST (2003) Enhanced expression of the gene for beta-glycosidase of Thermus caldophilus GK24 and synthesis of galacto-oligosaccharides by the enzyme. Biotechnol Appl Biochem 38:131–6

    Article  CAS  Google Scholar 

  • Depeint F, Tzortzis G, Vulevic J, I’Anson K, Gibson GR (2008) Prebiotic evaluation of a novel galactooligosaccharide mixture produced by the enzymatic activity of bifidobacterium bifidum NCIMB 41171, in healthy humans, a randomized, double-blind, crossover, placebo-controlled intervention study. Am J Clin Nutr 87:785–791

    CAS  Google Scholar 

  • Drakoularakou A, Tzortzis G, Rastall RA, Gibson GR (2010) A double-blind, placebo controlled, randomized human study assessing the capacity of a novel galacto-oligosaccharide mixture in reducing travellers diarrhoea. Eur J Clin Nutr 64:146–152

    Article  CAS  Google Scholar 

  • Feliu JX, Villaverde A (1994) An optimized ultrasonication protocol for bacterial cell disruption and recovery of β-galactosidase fusion proteins. Biotechnol Tech 8:509–514

    Article  CAS  Google Scholar 

  • Figueroa-Gonzalez I, Quijano G, Ramirez G, Cruz-Guerrero A (2011) Probiotics and prebiotics: perspectives and challenges. J Sci Food Agric 9:1341–1348

    Article  Google Scholar 

  • Geciova J, Giesova M, Jelen P, Plockova M (2002) Disruption of streptococcus thermophilus 143 culture by three mechanical methods for increased β-galactosidase activity. Milchwiss 57:509–511

    CAS  Google Scholar 

  • Hansson T, Kaper T, van der Oost J, de Vos WM, Adlercreutz P (2001) Improved oligosaccharide synthesis by protein engineering of beta-glucosidase CelB from hyperthermophilic Pyrococcus furiosus. Biotechnol Bioengr 73:203–210

    Article  CAS  Google Scholar 

  • Ismail SA, El-Mohamady Y, Helmy WA, Abou-Romia R, Hashem AM (2010) Cultural condition affecting the growth and production of β-galactosidase by Lactobacillus acidophilus NRRL 4495. Aust J Basic Appl Scib 4:5051–5058

    Google Scholar 

  • Iwasaki K, Nakajima M, Nakao S (1996) Galacto-oligosaccharide production from lactose by an enzymatic batch reaction using β-galactosidase. Process Biochem 31:69–76

    Article  CAS  Google Scholar 

  • Ji ES, Park NH, Oh DK (2005) Galacto-oligosaccharide production by a thermostable recombinant beta-galactosidase from Thermotoga maritima. World J Microb Biot 21:759–764

    Article  CAS  Google Scholar 

  • Kara F (2004) Release and characterization of beta-galactosidase from Lactobacillus plantarum. Dissertation, The graduate school of natural and applied sciences, Middle East Technical University.

  • Kim CS, Ji ES, Oh DK (2004) Characterization of a thermostable recombinant beta-galactosidase from Thermotoga maritima. J Appl Microbiol 97:1006–1014

    Article  CAS  Google Scholar 

  • Kreft ME, Roth L, Jelen P (2001) Lactose hydrolyzing ability of sonicated cultures of Lactobacillus delburickii ssp. bulgaricus 11842. Lait 81:355–364

    Article  CAS  Google Scholar 

  • Lane JH, Eynon L (1923) Volumetric determination of reducing sugars by means of Fehling’s solution, with methylene blue as internal indicator. IS1 XXV:143–149

  • Lick S, Keller M, Bockelmann W, Heller K (1996) Rapid identification of Streptococcus thermophilus by primer-specific PCR amplification based on its lacZ gene. System Appl Microbiol 19:74–77

    Article  CAS  Google Scholar 

  • Martinez-Villaluenga C, Cardelle-Cobas A, Corzo N, Olano A, Villamiel M (2008) Optimization of conditions for galactooligosaccharides synthesis during lactose hydrolysis by β-galactosidase from Kluyveromyces lactis (Lactozym 3000 L HP G). Food Chem 107:258–264

    Article  CAS  Google Scholar 

  • Nakkharat P, Kulbe KD, Yamabhai M, Haltrich D (2006) Formation of galacto oligosaccharides during lactose hydrolysis by a novel β-galactosidase from the moderately thermophilic fungus Talaromyces thermophilus. Biotechnol J 1:633–638

    Article  CAS  Google Scholar 

  • Neri DFM, Balcao VM, Costa RS, Rocha I, Ferreira E, Torres DPM (2009) Galacto-oligosaccharides production during lactose hydrolysis by free Aspergillus oryzae beta galactosidase and immobilized on magnetic polysiloxane-polyvinyl alcohol. Food Chem 115:92–99

    Article  CAS  Google Scholar 

  • Nguyen TH, Splechtna B, Steinbock M, Kneifel W, Lettner HP, Kulbe KD, Haltrich D (2006) Purification and characterization of two novel β-galactosidases from Lactobacillus reuteri. J Agric Food Chem 54:4989–98

    Article  CAS  Google Scholar 

  • Oberoi HS, Bansal S, Dhillon GS (2008) Enhanced β-galactosidase production by supplementing whey with cauliflower waste. Int J Food Sc Technol 43:1499–1504

    Article  CAS  Google Scholar 

  • Panesar PS, Kumari S, Panesar R (2010) Potential applications of immobilized β-galactosidase in food processing industries. Enzyme Res 1–16

  • Park HY, Kim HJ, Lee JK, Kim D, Oh DK (2008) Galactooligosaccharide production by a thermostable beta-galactosidase from Sulfolobus solfataricus. World J Microb Biot 24:1553–1558

    Article  CAS  Google Scholar 

  • Quintero M, Maldonado M, Perez-Munoz M, Jimenez R, Fangman T, Rupnow J, Wittke A, Russell M, Hutkins R (2011) Adherence inhibition of Cronobacter sakazakii to intestinal epithelial cells by prebiotic oligosaccharides. Curr Microbiol 62:1448–1454

  • Sangwan V, Tomar SK, Singh RRB, Ali B (2011) Galactooligosaccharides: novel components of designer foods. J Food Sci 76:R103–R111

    Article  CAS  Google Scholar 

  • Searle LE, Cooley WA, Jones G, Nunez A, Crudgington B, Weyer U, Dugdale AH, Tzortzis G, Collins JW, Woodward MJ, La Ragione RM (2010) Purified galactooligosaccharide, derived from a mixture produced by the enzymic activity of Bifidobacterium bifidum, reduces Salmonella enterica serovar Typhimurium adhesion and invasion in vitro and in vivo. J Med Microbiol 59:1428–1439

    Article  CAS  Google Scholar 

  • Shenderov BA (2013) Metabiotics: novel idea or natural development of probiotic conception. Microb Ecol Health Dis 24:20399

    Google Scholar 

  • Silk DB, Davis A, Vulevic J, Tzortzis G, Gibson GR (2009) Clinical trial: The effects of a trans-galactooligosaccharide prebiotic on faecal microbiota and symptoms in irritable bowel syndrome. Aliment Pharmacol Ther 29:508–518

    Article  CAS  Google Scholar 

  • Sinclair HR, de Slegte J, Gibson GR, Rastall RA (2009) Galactooligosaccharides (GOS) inhibit Vibrio cholerae toxin binding to its GM1 receptor. J Agric Food Chem 57:3113–3119

  • Somkuti GA, Dominiecki ME, Steinberg DH (1998) Permeabilization of Streptococcus thermophilus and Lactobacillus delbureckii subsp. bulgaricus with ethanol. Curr Microbiol 36:202–206

    Article  CAS  Google Scholar 

  • Splechtna B, Nguyen T, Zehetner R, Lettner HP, Lorenz W, Haltrich D (2007) Process development for the production of prebiotic galacto-oligosaccharides from lactose using β-galactosidase from Lactobacillus sp. Biotechnol J 2:480–485

    Article  CAS  Google Scholar 

  • Sriphannam W, Unban K, Ashida H, Yamamoto K, Khanongnuch C (2012) Medium component improvement for β-galactosidase production by a probiotic strain Lactobacillus fermentum CM33. Afr J Biotechnol 11:11242–11251

    CAS  Google Scholar 

  • Tari C, Ustok FI, Harsa S (2010) Production of food grade β-Galactosidase from artisanal yogurt strains. Food Biotechnol 24:78–94

    Article  CAS  Google Scholar 

  • Torres D, Goncalves M, Teixeira J, Rodrigues L (2010) Galacto-Oligosaccharides: Production, Properties, Applications, and Significance as Prebiotics. Compr Rev Food Sci Food Saf 9:438–454

    Article  CAS  Google Scholar 

  • Ustok FI, Tari C, Harsa S (2010) Biochemical and thermal properties of β-galactosidase enzymes produced by artisanal yoghurt cultures. Food Chem 119:1114–1120

    Article  CAS  Google Scholar 

  • Valero JIS (2009) Production of galacto-oligosaccharides from lactose by immobilized β-galactosidase and posterior chromatographic separation. Graduate school of The Ohio State University, Disseration

    Google Scholar 

  • Wang D, Sakakibara M (1997) Lactose hydrolysis and β-galactosidase activity in sonicated fermentation with Lactobacillus strains Ultrasonics. Sonochemistry 4:255–261

  • Zhou QZK, Chen XD (2001) Effects of temperature and pH on the catalytic activity of the immobilized β-galactosidase from Kluyveromyces lactis. Bioch Eng J 9:33–40

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank National Agriculture Innovative Project (NAIP), New Delhi, for funding the project and FrieslandCampina Domo for making the GOS available for this study. The authors thank the Director of NDRI for supporting the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhir K. Tomar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sangwan, V., Tomar, S.K., Ali, B. et al. Production of β-galactosidase from streptococcus thermophilus for galactooligosaccharides synthesis. J Food Sci Technol 52, 4206–4215 (2015). https://doi.org/10.1007/s13197-014-1486-4

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-014-1486-4

Keywords

Navigation