Skip to main content

Advertisement

Log in

Production and characterization of briquettes from invasive forest weeds: Lantana camara and Prosopis juliflora

  • Original Article
  • Published:
Journal of the Indian Academy of Wood Science Aims and scope Submit manuscript

Abstract

Study on production of briquettes from two invasive forest weeds, i.e., Lantana camara and Prosopis juliflora was carried out. The experiments were carried out using a 90 mm industrial briquetting unit. The optimum moisture content for briquetting was found around 10–12%. L. camara and P. juliflora biomass briquettes were found to have high density (1.2 g cm−3) and high energy density (23.05 GJ m−3). In this study, fuel properties (calorific value, proximate and ultimate analysis), combustion characteristics and ash elemental composition of L. camara and P. juliflora biomass were investigated. Both the species are found to have less ash content. Further, high CaO content in ash (47–68%) gives added advantage to these species. In this study, we have also worked out the cost involved in briquetting. The emphasis was given to these species because of the huge biomass they produce. These species are widely present in different agro-climatic zones of India and can play a major role in future bioenergy schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Achhireddy NR, Singh M, Achhireddy LL, Nigg HN, Nagy S (1985) Isolation and partial characterization of phytotoxic compounds from Lantana (Lantana camara L.). J Chem Ecol 11:979–988

    Article  CAS  Google Scholar 

  • Bhagwat SA, Breman E, Thekaekara T, Thornton TF, Willis KJ (2012) A battle lost? Report on two centuries of invasion and management of Lantana camara L. in Australia, India and South Africa. PLoS ONE 7(3):e32407. https://doi.org/10.1371/journal.pone.0032407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Xing L, Han L (2009) Renewable energy from agro-residue in China; solid biofuels and biomass briquetting technology. Renew Sustain Energy Rev 13(9):2689–2695

    Article  Google Scholar 

  • Colley Z, Fasina OO, Bransby D, Lee YY (2006) Moisture effect on the physical characteristics of switchgrass pellets. Trans ASABE 49(6):1845–1851

    Article  Google Scholar 

  • Demirbas A (2001) Relationships between lignin contents and heating values of biomass. Energy Convers Manage 42:183–188

    Article  CAS  Google Scholar 

  • Demirbaş A, Sahin A (1998) Evaluation of biomass residue: 1. Briquetting waste paper and wheat straw mixtures. Fuel Process Technol 55(2):175–183

    Article  Google Scholar 

  • Emerhi EA (2011) Physical and combustion properties of briquettes produced from sawdust of three hardwood species and different organic binders. Adv Appl Sci Res 2(6):236–246

    CAS  Google Scholar 

  • Grover PD, Mishra SK (1996) Biomass briquetting: technology and practice. Regional wood energy development programme in Asia. Field document no. 46, Food and agricultural organization

  • Haykiri-Acma H (2003) Combustion characteristics of different biomass materials. Energy Convers Manage 44:155–162

    Article  CAS  Google Scholar 

  • Junior HDJE, Nakashima GT, Yamaji FM, Guerra SPS, Ballarin AW (2017) Eucalyptus short-rotation coppice for solid fuel production. Ind Crops Prod 108:636–640

    Article  Google Scholar 

  • Kanagaraj N, Sekhar C, Tilak M, Palanikumaran B (2017) Cost and returns of briquette production in Tamil Nadu. Int J Curr Microbiol Appl Sci. 6(7):1238–1242. https://doi.org/10.20546/ijcmas.2017.607.149

    Article  Google Scholar 

  • Kailappan R, Gothandapani L, Viswanathan R (2000) Production of activated carbon from prosopis (Prosopis juliflora). Bioresour Technol 75(3):241–243

    Article  CAS  Google Scholar 

  • Koppejan J, van van Loo S (2012) The handbook of biomass combustion and co-firing. Taylor & Francis, Banglore

    Book  Google Scholar 

  • Kumar R, Chandrashekar N, Pandey KK (2009) Study on fuel properties and combustion characteristic of Lantana camara and Eupatorium spp. Curr Sci 97(6):930–934

    CAS  Google Scholar 

  • Kumar R, Chandrashekar N (2013) Study on chemical, elemental and combustion characteristics of Lantana camara wood charcoal. J Indian Acad Wood Sci 10(2):134–139

    Article  Google Scholar 

  • Kumar R, Chandrashekar N (2014) Fuel properties and combustion characteristics of some promising bamboo species in India. J For Res 25(2):471–476

    Article  CAS  Google Scholar 

  • Kumar R, Chandrashekar N, Prasad NRR, Tailor R (2020) Effect of extractive content on fuelwood characteristics of certain woody and non-woody biomass. Curr Sci 118(6):966–969

    CAS  Google Scholar 

  • Kumar S, Mathur M (2014) Impact of invasion by Prosopis juliflora on plant communities in arid grazing lands. Trop Ecol 55(1):33–46

    Google Scholar 

  • Kumar RK (2017). Lantana removal under MNREGA from next week. The Hindu (28th August, 2017). https://www.thehindu.com/news/national/karnataka/lantana-removal-under-mnrega-from-next-week/article19571797.ece. Accessed 04 May 2020

  • Li Y, Liu H (2000) High pressure densification of wood residues to form anupgraded fuel. Biomass Bioenerg 19:177–186

    Article  CAS  Google Scholar 

  • Love A, Babu S, Babu CR (2009) Management of Lantana, an invasive alien weed, in forest ecosystems of India. Curr Sci 97(10):1421–1429

    Google Scholar 

  • Mani S, Sokhansanj S, Bi X, Turhollow A (2006a) Economics of producing fuel pellets from biomass. Appl Eng Agric 22(3):421–426

    Article  Google Scholar 

  • Mani S, Tabil LG, Sokhansanj S (2006b) Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses. Biomass Bioenerg 30:648–654

    Article  Google Scholar 

  • Mangut V, Sabio E, Ganan J, Gonzalez JF, Ramiro A, Gonzalez CM, Roman S, Al-Kassir A (2006) Thermogravimetric study of the pyrolysis of biomass residues from tomato processing industry. Fuel Process Technol 87(2):109–115

    Article  CAS  Google Scholar 

  • Matthew BT, Adele MR (2007) Are exotic natural enemies an effective way of controlling invasive plants? Trends Ecol Evol 22(9):447–452

    Article  Google Scholar 

  • McKendry P (2002) Energy production from biomass (part 1): Overview of biomass. Biores Technol 83(1):37–46

    Article  CAS  Google Scholar 

  • Munir S, Daood SS, Nimmo W, Cunliffe AM, Gibbs BM (2009) Thermal analysis and devolatilization kinetics of cotton stalk, sugar cane bagasse and shea meal under nitrogen and air atmospheres. Bioresour Technol 100:1413–1418

    Article  CAS  Google Scholar 

  • Ona T, Sonoda T, Shibata M, Fukazawa K (1995) Small-scale method to determine the contents of wood components from multiple eucalypt samples. Tappi J 78:121–126

    CAS  Google Scholar 

  • Obernberger I, Thek G (2004) Physical characterization and chemical composition of densified biomass fuels with regard to their combustion behaviour. Biomass Bioenerg 27(6):653–669

    Article  CAS  Google Scholar 

  • Ohman M, Nordin A (2000) The role of kaolin in prevention of bed agglomeration during fluidized bed combustion of biomass fuels. Energy Fuels 14:618

    Article  Google Scholar 

  • Olofsson G, Ye Z, Bjerle I, Andersson A (2002) Bed agglomeration problems in fluidized bed biomass combustion. Ind Eng Chem Res 41(12):2888–2894

    Article  CAS  Google Scholar 

  • de Freitas PCe, da Silva MF, Silva RT, Coneglian A, Sette CR Jr (2016) Evaluation of briquettes from bamboo species produced under different temperatures. Int J Curr Res 8(09):39260–39265

    Google Scholar 

  • Ramírez-Gómez A, Gallego E, Fuentes JM, González-Montellano C, Ayuga F (2014) Values for particle-scale properties of biomass briquettes made from agroforestry residues. Particuology 12:100–106

    Article  Google Scholar 

  • Saptoadi H (2008) The best biobriquette dimension and its particle size. Asian J Energy Environ 9(3–4):161–175

    Google Scholar 

  • Sette CR Jr, de Castro P, Freitas VP, Yamaji FM, de Araújo Almeida R (2016) Production and characterization of bamboo pellets. Biosci J 32(4):922–930

    Article  Google Scholar 

  • Sharma GP, Akhilesh S, Raghubanshi SJS (2005) Lantana invasion: an overview. Weed Biol Manage 5:157–165

    Article  Google Scholar 

  • Shiferawa H, Demel T, Nemomissac S, Assefac F (2004) Some biological characteristics that foster the invasion of Prosopis juliflora (Sw.) DC. at Middle Awash Rift Valley Area, north-eastern Ethiopia. J Arid Environ 58:134–153

    Google Scholar 

  • Silva RT, Sette Junior CR, Ferreira A, Chagas MP, Tomazello FM (2019) Wood and briquette density under the effect of fertilizers and water regimes. Floresta e Ambiente 26(1):e20160471

    Article  Google Scholar 

  • Tripathi AK, Iyer PVR, Kandpal TC (1998) A techno-economic evaluation of biomass briquetting in India. Biomass Bioenerg 14(5–6):479–488

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We express our sincere thanks to Karnataka Forest Department for their support during the course of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritesh Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Chandrashekar, N. Production and characterization of briquettes from invasive forest weeds: Lantana camara and Prosopis juliflora. J Indian Acad Wood Sci 17, 158–164 (2020). https://doi.org/10.1007/s13196-020-00268-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13196-020-00268-8

Keywords

Navigation