Skip to main content
Log in

Fuel properties and combustion characteristics of some promising bamboo species in India

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

We investigated the fuel characteristics of five important bamboo species viz., Dendrocalamus strictus, D. brandisii, D. stocksii, Bambusa bambos and B. balcooa. The selected species cover more than 85% of the total growing stock of bamboo in India. Basic density varied from 0.48 to 0.78 g·cm−3 among the bamboo species studied. Ash content, volatile matter content and fixed carbon content ranged between 1.4%–3.0%, 77.2%–80.8% and 17.6%–21.1%, respectively. Variation in calorific value (18.7–19.6 MJ·kg−1) was marginal. Fuel value index varied widely (586–2120) among bamboo species. The highest calorific value (19.6 MJ·kg−1) and fuel value index (2120) were found in B. balcooa. Ash elemental analysis revealed that silica and potassium are the major ash forming minerals in bamboo biomass. Silica content ranged from 8.7% to 49.0%, while potassium ranged from 20.6% to 69.8%. We studied combustion characteristics under oxidizing atmosphere. Burning profiles of the samples were derived by applying the derivative thermogravimetric technique which is discussed in detail. The five bamboo species were different in their combustion behaviour, mainly due to differences in physical and chemical properties. We compare fuel properties, ash elemental analysis and combustion characteristics of bamboo biomass with wood biomass of Eucalyptus hybrid (Eucalyptus tereticornis × Eucalyptus camaldulensis).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asif M, Muneer T. 2007. Energy supply, its demand and security issues for developed and emerging economies. Renewable and Sustainable Energy Review, 11(7): 1388–1413.

    Article  Google Scholar 

  • Bodirlau R, Teaca CA, Spiridon I. 2008. Chemical modification of beech wood: effect on thermal stability. BioResources, 3(3): 789–800.

    CAS  Google Scholar 

  • Chauhan SS, Walker JCF. 2004. Relationships between longitudinal growth strain and some wood properties in Eucalyptus nitens. Australian Forestry, 67(4):254.

    Article  Google Scholar 

  • Chen E. 2012. “Growmore Biotech plants up power with bamboo in India”. Available at: http://www.greenprospectsasia.com/.

    Google Scholar 

  • Chutia RS, Kataki R, Bhaskar T. 2013. Thermogravimetric and decomposition kinetic studies of Mesua ferrea L. deoiled cake. Bioresource Technology, 139: 66–72.

    Article  CAS  PubMed  Google Scholar 

  • Davidsson KO, Korsgren JG, Pettersson JBC, Jaglid U. 2002. The effects of fuel washing techniques on alkali release from biomass. Fuel, 81: 137–142.

    Article  CAS  Google Scholar 

  • Demirbas A. 2001. Relationships between lignin contents and heating values of biomass. Energy Conversion and Management, 42: 183–188.

    Article  CAS  Google Scholar 

  • Demirbas MF, Balat M, Balat H. 2009. Potential contribution of biomass to the sustainable energy development. Energy Conversion and Management, 50(7): 1746–1760.

    Article  CAS  Google Scholar 

  • Dence CW. 1992. The determination of lignin. In: S.Y Lin and C.W Dence (eds), Methods of lignin chemistry. Springer-Verlag Berlin Heidelberg, pp. 33–61.

    Chapter  Google Scholar 

  • FSI. 2011. India State of Forest Report. Dehradun: Forest Survey of India, p. 57.

    Google Scholar 

  • Fujii Y, Azuma J, Marchessault RH, Morin FG, Aibara S, Okamura K. 1993. Chemical composition change of bamboo accompanying its growth. Holzforschung, 47(2): 109–115.

    Article  CAS  Google Scholar 

  • Garcia-Ibanez P, Sanchez M, Cabanillas A. 2006. Thermogravimetric analysis of olive-oil residue in air atmosphere. Fuel Processing Technology, 87:103–107.

    Article  CAS  Google Scholar 

  • Haykiri-Acma H. 2003. Combustion characteristics of different biomass materials. Energy Conversion Management, 44: 155–162.

    Article  CAS  Google Scholar 

  • INBAR (International Network for Bamboo and Rattans) 2012. “INBAR and ENEA release the first official study verifying the use of bamboo biomass for energy production”. Available at: http://www.inbar.int/2012/10/ [Accessed May 2013].

    Google Scholar 

  • IEA 2012. International energy statistics. International Energy Agency, Paris, France. Available at: http://www.iea.org/publications/freepublications/publication/kwes.pdf. [Accessed March 2013].

    Google Scholar 

  • Jain R. 1993. Fuel characteristics of some tropical trees of India. Biomass and Bioenergy, 4: 454–461.

    Article  Google Scholar 

  • Johari A, Samseh SH, Ramli M, Hashim H. 2012. Potential use of solar photovoltaic in peninsular Malaysia. International Journal of Renewable Energy Resources, 2:1–5.

    Google Scholar 

  • Kleinhenz V, Midmore DJ. 2001. Aspects of bamboo agronomy. Advances in Agronomy, 74: 99–153.

    Article  CAS  Google Scholar 

  • Kumar M, Gupta RC, Sharma T. 1992. Effect of carbonization conditions on the yield and chemical composition of Acacia and Eucalyptus wood chars. Biomass and Bioenergy, 3(6): 411–417.

    Article  CAS  Google Scholar 

  • Kumar R, Pandey KK, Chandrashekar N, Mohan S. 2010. Effect of tree-age on calorific value and other fuel properties of Eucalyptus hybrid. Journal of Forestry Research, 21(4): 514–516.

    Article  CAS  Google Scholar 

  • Moya R, Tenorio C. 2013. Fuelwood characteristics and its relation with extractives and chemical properties of ten fast-growth species in Costa Rica. Biomass and Bioenergy, 56: 14–21.

    Article  CAS  Google Scholar 

  • Munir S, Daood SS, Nimmo W, Cunliffe AM, Gibbs BM. 2009. Thermal analysis and devolatilization kinetics of cotton stalk, sugar cane bagasse and shea meal under nitrogen and air atmospheres. Bioresource Technology, 100: 1413–1418.

    Article  CAS  PubMed  Google Scholar 

  • Ohman M, Nordin A. 2000. The role of kaolin in prevention of bed agglomeration during fluidized bed combustion of biomass fuels. Energy and Fuels, 14: 618.

    Article  Google Scholar 

  • Peter MK. 2002a. Energy production from biomass (part 2): Conversion Technologies. Bioresource Technology, 83(1): 47–54.

    Article  Google Scholar 

  • Peter MK. 2002b. Energy production from biomass (part 1): Overview of biomass. Bioresource Technology, 83(1): 37–46.

    Article  Google Scholar 

  • Saikia P, Kataki R, Choudhury PK, Konwer D. 2007. Carbonization of eight bamboo species of northeast India. Energy Sources, 29: 799–805

    Article  CAS  Google Scholar 

  • Scurlock JMO, Dayton DC, Hames B. 2000. Bamboo: an overlooked biomass resource? Biomass and Bioenergy, 19: 229–244.

    Article  CAS  Google Scholar 

  • Sims REH. 2003. Bioenergy to mitigate for climate change and meet the needs of society, the economy and the environment. Mitigation and Adoption Strategies for Global Change, 8: 349–370.

    Article  Google Scholar 

  • Sims REH, Hastings A, Schlamadinger B, Taylor G, Smith P. 2006. Energy crops: current status and future prospects. Global Change Biology, 12(11): 2054–2076.

    Article  Google Scholar 

  • Singh O. 2008. Bamboo for sustainable livelihood in India. Indian Forester, 134(9): 1193–1198.

    Google Scholar 

  • Timell TE, Glaudemans CPJ, Gillham JK. 1959. TAPPI, 42:623.

    CAS  Google Scholar 

  • Villeneuve J, Palacios JH, Savoie P, Godbout S. 2012. A critical review of emission standards and regulations regarding biomass combustion in small scale units (<3 MW). Bioresource Technology, 111: 1–11.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritesh Kumar.

Additional information

Corresponding editor: Zhu Hong

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Chandrashekar, N. Fuel properties and combustion characteristics of some promising bamboo species in India. Journal of Forestry Research 25, 471–476 (2014). https://doi.org/10.1007/s11676-014-0478-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-014-0478-6

Keywords

Navigation