Skip to main content
Log in

Molecular Markers in the Diagnosis of Thyroid Cancer in Indeterminate Thyroid Nodules

  • Review Article
  • Published:
Indian Journal of Surgical Oncology Aims and scope Submit manuscript

Abstract

The Bethesda System for the Reporting of Thyroid Cytology recognises six diagnostic categories of thyroid nodule cytology with an incremental risk of malignancy. Although the Bethesda system created a much-needed handhold by standardising the cytological diagnosis and management of thyroid nodules worldwide, the system does not provide a clear answer to the heterogeneous group of nodules with indeterminate cytology. Improvement in the assessment of indeterminate fine-needle aspiration (FNA) results with molecular testing allows better risk stratification and reduces the need for diagnostic thyroid surgery. The molecular markers are classified as a “rule out” test, which has a high negative predictive value and helpful in cases with a low pre-test probability of cancer to rule out thyroid cancer. The “rule in” test has a high positive predictive value and helps in confirming malignancy in those with a high pre-test probability of cancer. This review summarises the commonly used molecular studies in thyroid FNAC aspirates and their current role in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cibas ES, Ali SZ (2017) The 2017 Bethesda system for reporting thyroid cytopathology. Thyroid 27:1341–1346

    Article  Google Scholar 

  2. Cibas ES, Baloch ZW, Fellegara G, LiVolsi VA, Raab SS, Rosai J, Diggans J, Friedman L, Kennedy GC, Kloos RT, Lanman RB, Mandel SJ, Sindy N, Steward DL, Zeiger MA, Haugen BR, Alexander EK (2013) A prospective assessment defining the limitations of thyroid nodule pathologic evaluation. Ann Intern Med 159(5):325–332

    Article  Google Scholar 

  3. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, Pacini F, Randolph GW, Sawka AM, Schlumberger M, Schuff KG, Sherman SI, Sosa JA, Steward DL, Tuttle RM, Wartofsky L (2016) 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association Guidelines Task Force on thyroid nodules and differentiated thyroid cancer. Thyroid. 26(1):1–133

    Article  Google Scholar 

  4. de Koster EJ, de Geus-Oei L-F, Dekkers OM, van Engen-van Grunsven I, Hamming J, Corssmit EPM, Morreau H, Schepers A, Smit J, Oyen WJG, Vriens D (2018) Diagnostic utility of molecular and imaging biomarkers in cytological indeterminate thyroid nodules. Endocr Rev 39(2):154–191

    Article  Google Scholar 

  5. Wang C-CC, Friedman L, Kennedy GC, Wang H, Kebebew E, Steward DL, Zeiger MA, Westra WH, Wang Y, Khanafshar E, Fellegara G, Rosai J, LiVolsi V, Lanman RB (2011) A large multicenter correlation study of thyroid nodule cytopathology and histopathology. Thyroid 21(3):243–251

    Article  Google Scholar 

  6. Nayar R, Ivanovic M (2009) The indeterminate thyroid fine-needle aspiration: experience from an academic center using terminology similar to that proposed in the 2007 National Cancer Institute Thyroid Fine Needle Aspiration State of the Science Conference. Cancer 117(3):195–202

    PubMed  Google Scholar 

  7. Kannan S, Raju N, Kekatpure V et al (2017) Improving Bethesda Reporting in Thyroid Cytology: a team effort goes a long way and still miles to go. Indian J Endocrinol Metab 21(2):277–281

    Article  Google Scholar 

  8. Ezzat S, Sarti DA, Cain DR, Braunstein GD (1994) Thyroid incidentalomas. Prevalence by palpation and ultrasonography. Arch Intern Med 154(16):1838–1840

    Article  CAS  Google Scholar 

  9. Vaccarella S, Franceschi S, Bray F, Wild CP, Plummer M, Dal Maso L (2016) Worldwide thyroid-cancer epidemic? The increasing impact of overdiagnosis. N Engl J Med 375(7):614–617

    Article  Google Scholar 

  10. Hodak SP, Rosenthal DS, American Thyroid Association Clinical Affairs Committee (2013) Information for clinicians: commercially available molecular diagnosis testing in the evaluation of thyroid nodule fine-needle aspiration specimens. Thyroid 23:131

    Article  Google Scholar 

  11. Xing M, Haugen BR, Schlumberger M (2013) Progress in molecular-based management of differentiated thyroid cancer. Lancet 381:1058–1069

    Article  CAS  Google Scholar 

  12. Xing M (2013) Molecular pathogenesis and mechanisms of thyroid cancer. Nat Rev Cancer 13(3):184–199

    Article  CAS  Google Scholar 

  13. Cohen Y, Xing M, Mambo E, Guo Z, Wu G, Trink B, Beller U, Westra WH, Ladenson PW, Sidransky D (2003) BRAF mutation in papillary thyroid carcinoma. J Natl Cancer Inst 95(8):625–627

    Article  CAS  Google Scholar 

  14. Lupi C, Giannini R, Ugolini C, Proietti A, Berti P, Minuto M, Materazzi G, Elisei R, Santoro M, Miccoli P, Basolo F (2007) Association of BRAF V600E mutation with poor clinicopathological outcomes in 500 consecutive cases of papillary thyroid carcinoma. J Clin Endocrinol Metab 92(11):4085–4090

    Article  CAS  Google Scholar 

  15. Xing M, Westra WH, Tufano RP, Cohen Y, Rosenbaum E, Rhoden KJ, Carson KA, Vasko V, Larin A, Tallini G, Tolaney S, Holt EH, Hui P, Umbricht CB, Basaria S, Ewertz M, Tufaro AP, Califano JA, Ringel MD, Zeiger MA, Sidransky D, Ladenson PW (2005) BRAF mutation predicts a poorer clinical prognosis for papillary thyroid cancer. J Clin Endocrinol Metab 90(12):6373–6379

    Article  CAS  Google Scholar 

  16. D’Cruz AK, Vaish R, Vaidya A, Nixon IJ, Williams MD, Vander Poorten V, López F, Angelos P, Shaha AR, Khafif A, Skalova A, Rinaldo A, Hunt JL, Ferlito A (2018) Molecular markers in well-differentiated thyroid cancer. Eur Arch Otorhinolaryngol 275:1375–1384

    Article  Google Scholar 

  17. Rabes HM, Demidchik EP, Sidorow JD, Lengfelder E, Beimfohr C, Hoelzel D, Klugbauer S (2000) Pattern of radiation-induced RET and NTRK1 rearrangements in 191 post-chernobyl papillary thyroid carcinomas: biological, phenotypic, and clinical implications. Clin Cancer Res 6(3):1093–1103

    CAS  PubMed  Google Scholar 

  18. Tallini G, Asa SL (2001) RET oncogene activation in papillary thyroid carcinoma. Adv Anat Pathol 8(6):345–354

    Article  CAS  Google Scholar 

  19. Kroll TG, Sarraf P, Pecciarini L, Chen CJ, Mueller E, Spiegelman BM, Fletcher JA (2000) PAX8-PPARgamma1 fusion oncogene in human thyroid carcinoma [corrected]. Science 289(5483):1357–1360

    Article  CAS  Google Scholar 

  20. Dwight T, Thoppe SR, Foukakis T, Lui WO, Wallin G, Höög A, Frisk T, Larsson C, Zedenius J (2003) Involvement of the PAX8/peroxisome proliferator-activated receptor gamma rearrangement in follicular thyroid tumors. J Clin Endocrinol Metab 88(9):4440–4445

    Article  CAS  Google Scholar 

  21. Castro P, Rebocho AP, Soares RJ, Magalhães J, Roque L, Trovisco V, Vieira de Castro I, Cardoso-de-Oliveira M, Fonseca E, Soares P, Sobrinho-Simões M (2006) PAX8-PPAR- gamma rearrangement is frequently detected in the follicular variant of papillary thyroid carcinoma. J Clin Endocrinol Metab 91(1):213–220

    Article  CAS  Google Scholar 

  22. Nikiforov YE, Ohori NP, Hodak SP, Carty SE, LeBeau SO, Ferris RL, Yip L, Seethala RR, Tublin ME, Stang MT, Coyne C, Johnson JT, Stewart AF, Nikiforova MN (2011) Impact of mutational testing on the diagnosis and management of patients with cytologically indeterminate thyroid nodules: a prospective analysis of 1056 FNA samples. J Clin Endocrinol Metab 96:3390–3397

    Article  CAS  Google Scholar 

  23. Nikiforov YE, Carty SE, Chiosea SI, Coyne C, Duvvuri U, Ferris RL, Gooding WE, LeBeau SO, Ohori NP, Seethala RR, Tublin ME, Yip L, Nikiforova MN (2015) Impact of the multi-gene ThyroSeq next-generation sequencing assay on cancer diagnosis in thyroid nodules with atypia of undetermined significance/follicular lesion of undetermined significance cytology. Thyroid 25:1217–1223

    Article  CAS  Google Scholar 

  24. Nikiforova MN, Mercurio S, Wald AI, Barbi de Moura M, Callenberg K, Santana-Santos L, Gooding WE, Yip L, Ferris RL, Nikiforov YE (2018) Analytical performance of the ThyroSeq v3 genomic classifier for cancer diagnosis in thyroid nodules. Cancer 124:1682–1690

    Article  CAS  Google Scholar 

  25. Vishwanath D, Shanmugam A, Sundaresh M et al. (2019) Develoipment of a Low-cost NGS Test for the Evaluation of Thyroid Nodules. Indian J Surgh Oncol. https://doi.org/10.1007/s13193-019-01000-w

  26. Aron M, Kapila K, Verma K (2006 Jul) Utility of galectin 3 expression in thyroid aspirates as a diagnostic marker in differentiating benign from malignant thyroid neoplasms. Indian J Pathol Microbiol 49(3):376–380

    PubMed  Google Scholar 

  27. Choudhury M, Singh S, Agarwal S (2011) Diagnostic utility of ki67 and p53 immunostaining on solitary thyroid nodule—a cytohistological and radionuclide scintigraphic study. Indian J Pathol Microbiol 54:472–475

    Article  Google Scholar 

  28. Mehrotra A, Goel MM, Singh K (2002) Ki-67 and AgNOR proliferative markers as diagnostic adjuncts to fine needle aspiration cytology of thyroid follicular lesions. Anal Quant Cytol Histol 24(4):205–211

    PubMed  Google Scholar 

  29. Hemalatha R, Pai R, Manipadam MT, Rebekah G, Cherian AJ, Abraham DT, Rajaratnam S, Thomas N, Ramakant P, Jacob PM (2018) Presurgical screening of fine needle aspirates from thyroid nodules for BRAF mutations: a prospective single center experience. Indian J Endocrinol Metab. 22(6):785–792

    Article  CAS  Google Scholar 

  30. George N, Agarwal A, Kumari N, Agarwal S, Krisnani N, Gupta SK (2018) Mutational profile of papillary thyroid carcinoma in an endemic goiter region of North India. Indian J Endocrinol Metab. 22(4):505–510

    Article  CAS  Google Scholar 

  31. Ahmad F, Nathani R, Venkat J, Bharda A, Vanere V, Bhatia S, Das BR (2018 Dec) Molecular evaluation of BRAF gene mutation in thyroid tumors: significant association with papillary tumors and extra thyroidal extension indicating its role as a biomarker of aggressive disease. Exp Mol Pathol 105(3):380–386

    Article  CAS  Google Scholar 

  32. George N, Agarwal A, Kumari N, Agarwal S, Krisnani N, Gupta SK (2018) Molecular profiling of follicular variant of papillary thyroid cancer reveals low-risk noninvasive follicular thyroid neoplasm with papillary-like nuclear features: a paradigm shift to reduce aggressive treatment of indolent tumors. Indian J Endocrinol Metab 22(3):339–346

    Article  CAS  Google Scholar 

  33. Krishnamurthy A, Ramshankar V, Murherkar K, Vidyarani S, Raghunandhan GC, Das A, Desai PB, Albert K (2017) Role and relevance of BRAF mutations in risk stratifying patients of papillary thyroid cancers along with a review of literature. Indian J Cancer 54:372–378

    Article  CAS  Google Scholar 

  34. Nair CG, Babu M, Biswas L, Jacob P, Menon R, Revathy AK, Nair K (2017) Lack of association of B-type Raf kinase V600E mutation with high-risk tumor features and adverse outcome in conventional and follicular variants of papillary thyroid carcinoma. Indian J Endocrinol Metab. 21(2):329–333. https://doi.org/10.4103/ijem.IJEM_353_16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chakraborty A, Narkar A, Mukhopadhyaya R, Kane S, D’Cruz A, Rajan MGR (2012) BRAF V600E mutation in papillary thyroid carcinoma: significant association with node metastases and extra thyroidal invasion. Endocr Pathol 23:83–93

    Article  CAS  Google Scholar 

  36. Chudova D, Wilde JI, Wang ET, Wang H, Rabbee N, Egidio CM, Reynolds J, Tom E, Pagan M, Rigl CT, Friedman L, Wang CC, Lanman RB, Zeiger M, Kebebew E, Rosai J, Fellegara G, LiVolsi VA, Kennedy GC (2010) Molecular classification of thyroid nodules using high-dimensionality genomic data. J Clin Endocrinol Metab 95:5296–5304

    Article  CAS  Google Scholar 

  37. Alexander EK, Kennedy GC, Baloch ZW, Cibas ES, Chudova D, Diggans J, Friedman L, Kloos RT, LiVolsi VA, Mandel SJ, Raab SS, Rosai J, Steward DL, Walsh PS, Wilde JI, Zeiger MA, Lanman RB, Haugen BR (2012) Preoperative diagnosis of benign thyroid nodules with indeterminate cytology. N Engl J Med 367:705–715

    Article  CAS  Google Scholar 

  38. McIver B, Castro MR, Morris JC, Bernet V, Smallridge R, Henry M, Kosok L, Reddi H (2014) An independent study of a gene expression classifier (Afirma) in the evaluation of cytologically indeterminate thyroid nodules. J Clin Endocrinol Metab 99:4069–4077

    Article  CAS  Google Scholar 

  39. Li H, Robinson KA, Anton B, Saldanha IJ, Ladenson PW (2011) Cost-effectiveness of a novel molecular test for cytologically indeterminate thyroid nodules. J Clin Endocrinol Metab 96:E1719–E1726

    Article  CAS  Google Scholar 

  40. Labourier E, Shifrin A, Busseniers AE, Lupo MA, Manganelli ML, Andruss B, Wylie D, Beaudenon-Huibregtse S (2015) Molecular testing for miRNA, mRNA, and DNA on fine-needle aspiration improves the preoperative diagnosis of thyroid nodules with indeterminate cytology. J Clin Endocrinol Metab 100:2743–2750

    Article  CAS  Google Scholar 

  41. Nishino M (2016) Molecular cytopathology for thyroid nodules: a review of methodology and test performance. Cancer Cytopathol 124:14–27

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subramanian Kannan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kannan, S. Molecular Markers in the Diagnosis of Thyroid Cancer in Indeterminate Thyroid Nodules. Indian J Surg Oncol 13, 11–16 (2022). https://doi.org/10.1007/s13193-020-01112-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13193-020-01112-8

Keywords

Navigation