Skip to main content

Molecular Profiles and the “Indeterminate” Thyroid Nodule

  • Chapter
Controversies in Thyroid Surgery

Abstract

Although fine-needle aspiration (FNA) biopsy is the most accurate and reliable diagnostic test available for the evaluation of a thyroid nodule, 20–30 % of FNA results are indeterminate or suspicious. In order to improve upon the diagnostic accuracy of FNA, several ancillary molecular tests have emerged to further refine the diagnostic role of FNA biopsy and improve the accuracy of preoperative diagnosis of indeterminate thyroid lesions. Over the past decade, significant progress has been made in the investigation of these molecular markers, and promising findings have been reported. However, because of the complexity of surgical decision-making processes, the clinical usefulness and impact of these markers remain unclear. This chapter will review the efficacy and potential clinical utility of these molecular markers in preoperative diagnosis of an indeterminate thyroid nodule.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mazzaferri EL. Management of a solitary thyroid nodule. N Engl J Med. 1993;328:553–9. doi:10.1056/NEJM199302253280807.

    Article  CAS  PubMed  Google Scholar 

  2. Baloch ZW, Cibas ES, Clark DP, Layfield LJ, Ljung BM, Pitman MB, et al. The national cancer institute thyroid fine needle aspiration state of the science conference: a summation. Cytojournal. 2008;5:6. doi:10.1186/1742-6413-5-6.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Baloch ZW, Fleisher S, LiVolsi VA, Gupta PK. Diagnosis of “follicular neoplasm”: a gray zone in thyroid fine-needle aspiration cytology. Diagn Cytopathol. 2002;26:41–4. doi:10.1002/dc.10043.

    Article  PubMed  Google Scholar 

  4. Cibas ES, Ali SZ. The Bethesda system for reporting thyroid cytopathology. Thyroid. 2009;19:1159–65. doi:10.1089/thy.2009.0274.

    Article  PubMed  Google Scholar 

  5. Mathur A, Najafian A, Zeiger MA, Olson MT, Schneider EB. Malignancy risk and reproducibility in atypia of undetermined significance on thyroid cytology. Surgery. 2014;156(6):1471–6. doi:10.1016/j.surg.2014.08.026.

    Article  PubMed  Google Scholar 

  6. Olson MT, Clark DP, Erozan YS, Ali SZ. Spectrum of risk of malignancy in subcategories of “atypia of undetermined significance”. Acta Cytol. 2011;55:518–25. doi:10.1159/000333232.

    Article  PubMed  Google Scholar 

  7. Ryu YJ, Jung YS, Yoon HC, Hwang MJ, Shin SH, Cho JS, et al. Atypia of undetermined significance on thyroid fine needle aspiration: surgical outcome and risk factors for malignancy. Ann Surg Treat Res. 2014;86:109–14. doi:10.4174/astr.2014.86.3.109.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Ho AS, Sarti EE, Jain KS, Wang H, Nixon IJ, Shaha AR, et al. Malignancy rate in thyroid nodules classified as Bethesda category III (AUS/FLUS). Thyroid. 2014;24:832–9. doi:10.1089/thy.2013.0317.

    Article  PubMed  Google Scholar 

  9. Olson MT, Boonyaarunnate T, Aragon Han P, Umbricht CB, Ali SZ, Zeiger MA. A tertiary center’s experience with second review of 3885 thyroid cytopathology specimens. J Clin Endocrinol Metab. 2013;98:1450–7. doi:10.1210/jc.2012-3898.

    Article  CAS  PubMed  Google Scholar 

  10. Cibas ES, Baloch ZW, Fellegara G, LiVolsi VA, Raab SS, Rosai J, et al. A prospective assessment defining the limitations of thyroid nodule pathologic evaluation. Ann Intern Med. 2013;159:325–32. doi:10.7326/0003-4819-159-5-201309030-00006.

    Article  PubMed  Google Scholar 

  11. Hirokawa M, Carney JA, Goellner JR, DeLellis RA, Heffess CS, Katoh R, et al. Observer variation of encapsulated follicular lesions of the thyroid gland. Am J Surg Pathol. 2002;26:1508–14.

    Article  PubMed  Google Scholar 

  12. Marais R, Marshall CJ. Control of the ERK MAP kinase cascade by Ras and Raf. Cancer Surv. 1996;27:101–25.

    CAS  PubMed  Google Scholar 

  13. Nikiforov YE, Carty SE, Chiosea SI, Coyne C, Duvvuri U, Ferris RL, et al. Highly accurate diagnosis of cancer in thyroid nodules with follicular neoplasm/suspicious for a follicular neoplasm cytology by ThyroSeq v2 next-generation sequencing assay. Cancer. 2014. doi:10.1002/cncr.29038.

    PubMed Central  Google Scholar 

  14. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–54.

    Article  CAS  PubMed  Google Scholar 

  15. Park J, Kim W, Hwang T, Lee S, Kim H, Han H, et al. BRAF and RAS mutations in follicular variants of papillary thyroid carcinoma. Endocr Pathol. 2013;24:69–76. doi:10.1007/s12022-013-9244-0.

    Article  CAS  PubMed  Google Scholar 

  16. Adeniran AJ, Zhu Z, Gandhi M, Steward DL, Fidler JP, Giordano TJ, et al. Correlation between genetic alterations and microscopic features, clinical manifestations, and prognostic characteristics of thyroid papillary carcinomas. Am J Surg Pathol. 2006;30:216–22.

    Article  PubMed  Google Scholar 

  17. Xing M. BRAF mutation in thyroid cancer. Endocr Relat Cancer. 2005;12:245–62.

    Article  CAS  PubMed  Google Scholar 

  18. Begum S, Rosenbaum E, Henrique R, Cohen Y, Sidransky D, Westra WH. BRAF mutations in anaplastic thyroid carcinoma: implications for tumor origin, diagnosis and treatment. Mod Pathol. 2004;17:1359–63.

    Article  CAS  PubMed  Google Scholar 

  19. Namba H, Nakashima M, Hayashi T, Hayashida N, Maeda S, Rogounovitch TI, et al. Clinical implication of hot spot BRAF mutation, V599E, in papillary thyroid cancers. J Clin Endocrinol Metab. 2003;88:4393–7.

    Article  CAS  PubMed  Google Scholar 

  20. Nikiforova MN, Kimura ET, Gandhi M, Biddinger PW, Knauf JA, Basolo F, et al. BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endocrinol Metab. 2003;88:5399–404.

    Article  CAS  PubMed  Google Scholar 

  21. Cohen Y, Rosenbaum E, Clark DP, Zeiger MA, Umbricht CB, Tufano RP, et al. Mutational analysis of BRAF in fine needle aspiration biopsies of the thyroid: a potential application for the preoperative assessment of thyroid nodules. Clin Cancer Res. 2004;15:2761–5.

    Article  Google Scholar 

  22. Adeniran AJ, Theoharis C, Hui P, Prasad ML, Hammers L, Carling T, et al. Reflex BRAF testing in thyroid fine-needle aspiration biopsy with equivocal and positive interpretation: a prospective study. Thyroid. 2011;21:717–23.

    Article  CAS  PubMed  Google Scholar 

  23. Rossi M, Buratto M, Bruni S, Filieri C, Tagliati F, Trasforini G, et al. Role of ultrasonographic/clinical profile, cytology, and BRAF V600E mutation evaluation in thyroid nodule screening for malignancy: a prospective study. J Clin Endocrinol Metab. 2012;97:2354–61.

    Article  CAS  PubMed  Google Scholar 

  24. Kleiman DA, Sporn MJ, Beninato T, Crowley MJ, Nguyen A, Uccelli A, et al. Preoperative BRAF(V600E) mutation screening is unlikely to alter initial surgical treatment of patients with indeterminate thyroid nodules: a prospective case series of 960 patients. Cancer. 2013;119:1495–502. doi:10.1002/cncr.27888.

    Article  CAS  PubMed  Google Scholar 

  25. Najafian A, Zeiger MA. The role of molecular diagnostic markers in the management of indeterminate and suspicious thyroid nodules. Int J Endocrinol Oncol. 2014;1:49–57. doi:10.2217/ije.13.4.

    Article  CAS  Google Scholar 

  26. Nikiforov YE. Molecular diagnostics of thyroid tumors. Arch Pathol Lab Med. 2011;135:569–77. doi:10.1043/2010-0664-RAIR.1.

    CAS  PubMed  Google Scholar 

  27. Agrawal N, Akbani R, Aksoy BA, Ally A, Arachchi H, Asa SL, et al. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014;159:676–90. doi:10.1016/j.cell.2014.09.050.

    Article  Google Scholar 

  28. Nikiforov YE, Steward DL, Robinson-Smith TM, Haugen BR, Klopper JP, Zhu Z, et al. Molecular testing for mutations in improving the fine-needle aspiration diagnosis of thyroid nodules. J Clin Endocrinol Metab. 2009;94:2092–8. doi:10.1210/jc.2009-0247.

    Article  CAS  PubMed  Google Scholar 

  29. Nikiforov YE, Ohori NP, Hodak SP, Carty SE, LeBeau SO, Ferris RL, et al. Impact of mutational testing on the diagnosis and management of patients with cytologically indeterminate thyroid nodules: a prospective analysis of 1056 FNA samples. J Clin Endocrinol Metab. 2011;96:3390–7. doi:10.1210/jc.2011-1469.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Cantara S, Capezzone M, Marchisotta S, Capuano S, Busonero G, Toti P, et al. Impact of proto-oncogene mutation detection in cytological specimens from thyroid nodules improves the diagnostic accuracy of cytology. J Clin Endocrinol Metab. 2010;95:1365–9. doi:10.1210/jc.2009-2103.

    Article  CAS  PubMed  Google Scholar 

  31. Chudova D, Wilde JI, Wang ET, Wang H, Rabbee N, Egidio CM, et al. Molecular classification of thyroid nodules using high-dimensionality genomic data. J Clin Endocrinol Metab. 2010;95:5296–304. doi:10.1210/jc.2010-1087.

    Article  CAS  PubMed  Google Scholar 

  32. Alexander EK, Kennedy GC, Baloch ZW, Cibas ES, Chudova D, Diggans J, et al. Preoperative diagnosis of benign thyroid nodules with indeterminate cytology. N Engl J Med. 2012;367:705–15. doi:10.1056/NEJMoa1203208.

    Article  CAS  PubMed  Google Scholar 

  33. Lastra RR, Pramick MR, Crammer CJ, LiVolsi VA, Baloch ZW. Implications of a suspicious Afirma test result in thyroid fine-needle aspiration cytology: An institutional experience. Cancer Cytopathol. 2014. doi:10.1002/cncy.21455.

    Google Scholar 

  34. Harrell RM, Bimston DN. Surgical utility of Afirma: effects of high cancer prevalence and oncocytic cell types in patients with indeterminate thyroid cytology. Endocr Pract. 2014;20:364–9. doi:10.4158/EP13330.OR.

    Article  PubMed  Google Scholar 

  35. McIver B, Castro MR, Morris JC, Bernet V, Smallridge R, Henry M, et al. An independent study of a gene expression classifier (Afirma™) in the evaluation of cytologically indeterminate thyroid nodules. J Clin Endocrinol Metab. 2014;99:jc20133584. doi:10.1210/jc.2013-3584.

    Google Scholar 

  36. Krane JF. Lessons from early clinical experience with the Afirma gene expression classifier. Cancer Cytopathol. 2014. doi:10.1002/cncy.21472.

    Google Scholar 

  37. Metzker ML. Sequencing technologies—the next generation. Nat Rev Genet. 2010;11:31–46. doi:10.1038/nrg2626.

    Article  CAS  PubMed  Google Scholar 

  38. Le Mercier M, D’Haene N, De Nève N, Blanchard O, Degand C, Rorive S, et al. Next-generation sequencing improves the diagnosis of thyroid FNA specimens with indeterminate cytology. Histopathology. 2014. doi:10.1111/his.12461.

    PubMed  Google Scholar 

  39. Meldrum C, Doyle MA, Tothill RW. Next-generation sequencing for cancer diagnostics: a practical perspective. Clin Biochem Rev. 2011;32:177–95.

    PubMed Central  PubMed  Google Scholar 

  40. Glenn TC. Field guide to next-generation DNA sequencers. Mol Ecol Resour. 2011;11:759–69.

    Article  CAS  PubMed  Google Scholar 

  41. Beadling C, Neff TL, Heinrich MC, Rhodes K, Thornton M, Leamon J, et al. Combining highly multiplexed PCR with semiconductor-based sequencing for rapid cancer genotyping. J Mol Diagn. 2013;15:171–6.

    Article  CAS  PubMed  Google Scholar 

  42. Nikiforova MN, Wald AI, Roy S, Durso MB, Nikiforov YE. Targeted next-generation sequencing panel (ThyroSeq) for detection of mutations in thyroid cancer. J Clin Endocrinol Metab. 2013;98:E1852–60. doi:10.1210/jc.2013-2292.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 2010;11:597–610. doi:10.1038/nrg2843.

    CAS  PubMed  Google Scholar 

  44. Ma R, Jiang T, Kang X. Circulating microRNAs in cancer: origin, function and application. J Exp Clin Cancer Res. 2012;31:38. doi:10.1186/1756-9966-31-38.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Weber F, Teresi RE, Broelsch CE, Frilling A, Eng C. A limited set of human microRNA is deregulated in follicular thyroid carcinoma. J Clin Endocrinol Metab. 2006;91:3584–91.

    Article  CAS  PubMed  Google Scholar 

  46. Nikiforova MN, Tseng GC, Steward D, Diorio D, Nikiforov YE. MicroRNA expression profiling of thyroid tumors: biological significance and diagnostic utility. J Clin Endocrinol Metab. 2008;93:1600–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Yip L, Kelly L, Shuai Y, Armstrong MJ, Nikiforov YE, Carty SE, et al. MicroRNA signature distinguishes the degree of aggressiveness of papillary thyroid carcinoma. Ann Surg Oncol. 2011;18:2035–41.

    Article  PubMed  Google Scholar 

  48. Chen Y-T, Kitabayashi N, Zhou XK, Fahey TJ, Scognamiglio T. MicroRNA analysis as a potential diagnostic tool for papillary thyroid carcinoma. Mod Pathol. 2008;21:1139–46.

    Article  CAS  PubMed  Google Scholar 

  49. Schwertheim S, Sheu S-Y, Worm K, Grabellus F, Schmid KW. Analysis of deregulated miRNAs is helpful to distinguish poorly differentiated thyroid carcinoma from papillary thyroid carcinoma. Horm Metab Res. 2009;41:475–81.

    Article  CAS  PubMed  Google Scholar 

  50. Tetzlaff MT, Liu A, Xu X, Master SR, Baldwin DA, Tobias JW, et al. Differential expression of miRNAs in papillary thyroid carcinoma compared to multinodular goiter using formalin fixed paraffin embedded tissues. Endocr Pathol. 2007;18:163–73.

    Article  CAS  PubMed  Google Scholar 

  51. Keutgen XM, Filicori F, Crowley MJ, Wang Y, Scognamiglio T, Hoda R, et al. A panel of four miRNAs accurately differentiates malignant from benign indeterminate thyroid lesions on fine needle aspiration. Clin Cancer Res. 2012;18:2032–8. doi:10.1158/1078-0432.CCR-11-2487.

    Article  CAS  PubMed  Google Scholar 

  52. Kitano M, Rahbari R, Patterson EE, Steinberg SM, Prasad NB, Wang Y, et al. Evaluation of candidate diagnostic microRNAs in thyroid fine-needle aspiration biopsy samples. Thyroid. 2012;22:285–91. doi:10.1089/thy.2011.0313.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Shen R, Liyanarachchi S, Li W, Wakely PE, Saji M, Huang J, et al. MicroRNA signature in thyroid fine needle aspiration cytology applied to “atypia of undetermined significance” cases. Thyroid. 2012;22:9–16. doi:10.1089/thy.2011.0081.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Dettmer M, Vogetseder A, Durso MB, Moch H, Komminoth P, Perren A, et al. MicroRNA expression array identifies novel diagnostic markers for conventional and oncocytic follicular thyroid carcinomas. J Clin Endocrinol Metab. 2013;98:E1–7. doi:10.1210/jc.2012-2694.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Alexander EK, Schorr M, Klopper J, Kim C, Sipos J, Nabhan F, et al. Multicenter clinical experience with the Afirma gene expression classifier. J Clin Endocrinol Metab. 2014;99:119–25. doi:10.1210/jc.2013-2482.

    Article  CAS  PubMed  Google Scholar 

  56. Duick DS, Klopper JP, Diggans JC, Friedman L, Kennedy GC, Lanman RB, et al. The impact of benign gene expression classifier test results on the endocrinologist-patient decision to operate on patients with thyroid nodules with indeterminate fine-needle aspiration cytopathology. Thyroid. 2012;22:996–1001. doi:10.1089/thy.2012.0180.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Aragon Han P, Olson MT, Fazeli R, Prescott JD, Pai SI, Schneider EB, et al. The impact of molecular testing on the surgical management of patients with thyroid nodules. Ann Surg Oncol. 2014;21:1862–9. doi:10.1245/s10434-014-3508-x.

    Article  PubMed  Google Scholar 

  58. Yip L, Farris C, Kabaker AS, Hodak SP, Nikiforova MN, McCoy KL, et al. Cost impact of molecular testing for indeterminate thyroid nodule fine-needle aspiration biopsies. J Clin Endocrinol Metab. 2012;97:1905–12. doi:10.1210/jc.2011-3048.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Li H, Robinson KA, Anton B, Saldanha IJ, Ladenson PW. Cost-effectiveness of a novel molecular test for cytologically indeterminate thyroid nodules. J Clin Endocrinol Metab. 2011;96:E1719–26. doi:10.1210/jc.2011-0459.

    Article  CAS  PubMed  Google Scholar 

  60. Najafzadeh M, Marra CA, Lynd LD, Wiseman SM. Cost-effectiveness of using a molecular diagnostic test to improve preoperative diagnosis of thyroid cancer. Value Health. 2012;15:1005–13. doi:10.1016/j.jval.2012.06.017.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martha A. Zeiger M.D., F.A.C.S. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Najafian, A., Mathur, A., Zeiger, M.A. (2016). Molecular Profiles and the “Indeterminate” Thyroid Nodule. In: Hanks, J., Inabnet III, W. (eds) Controversies in Thyroid Surgery. Springer, Cham. https://doi.org/10.1007/978-3-319-20523-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20523-6_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20522-9

  • Online ISBN: 978-3-319-20523-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics