Skip to main content

Advertisement

Log in

Molecular testing for thyroid nodules: Where are we now?

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Approximately 25% of the fine needle aspiration samples (FNAB) of thyroid nodules are classified as “indeterminate samples”, that means, Bethesda III and IV categories. Until the last decade, most of these cases underwent diagnostic surgery, although only a minority (13–34%) confirmed malignancy postoperatively. In view of this, with the objective of improving the preoperative diagnosis in these cases, the molecular tests emerged, which are validated from the diagnostic point of view, presenting good performance, with good diagnostic accuracy, being able to avoid diagnostic surgeries. With the advancement of knowledge of the role of each of the mutations and gene rearrangements in thyroid oncogenesis, molecular markers have left to play only a diagnostic role and have been gaining more and more space both in defining the prognostic role of the tumor, as well as in the indication of target therapy. Thus, the objective of this review is to show how to use the tool of molecular tests, now commercially available in the world, in the management of indeterminate cytological nodules, assessing the pre-test malignancy risk of the nodule, through clinical, ultrasonographic and cytological characteristics, and decide on the benefit of molecular testing for each patient. In addition, to discuss its new and promising prognostic and therapeutic role in thyroid cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wong R, Farrell SG, Grossmann M. Thyroid nodules: Diagnosis and management. Med J Aust. 2018;209(2):92–8.

    Article  PubMed  Google Scholar 

  2. Haugen BR, Alexander EK, Bible KC, et al. 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26(1):1–133.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ali SZ, Baloch ZW, Cochand-Priollet B, Schmitt FC, Vielh P, VanderLaan PA. The 2023 Bethesda system for reporting thyroid cytopathology. Thyroid. 2023. https://doi.org/10.1089/thy.2023.0141. Epub ahead of print. PMID: 37427847.

  4. Geramizadeh B, Bos-hagh S, Maleki Z. Cytomorphologic, imaging, molecular findings, and outcome in thyroid follicular lesion of undetermined significance/atypical cell of undetermined significance (AUS/FLUS): A mini-review. Acta Cytol. 2019;63(1):1–9.

    Article  PubMed  Google Scholar 

  5. Yassa L, Cibas ES, Benson CB, Frates MC, Doubilet PM, Gawande AA, et al. Long-term assessment of a multidisciplinary approach to thyroid nodule diagnostic evaluation. Cancer. 2007;111(6):508–16.

    Article  PubMed  Google Scholar 

  6. Durante C, Hegedüs L, Czarniecka A, Paschke R, Russ G, Schmitt F, Soares P, Solymosi T, Papini E. 2023 European Thyroid Association Clinical Practice Guidelines for thyroid nodule management. Eur Thyroid J. 2023;12(5):e230067. https://doi.org/10.1530/ETJ-23-0067. PMID: 37358008; PMCID: PMC10448590.

  7. Charkes ND. On the prevalence of familial nonmedullary thyroid cancer in multiply affected kindreds. Thyroid. 2006;16(2):181-6. https://doi.org/10.1089/thy.2006.16.181. Erratum in: Thyroid. 2006 May;16(5):520.

  8. Suteau V, Munier M, Briet C, Rodien P. Sex bias in differentiated thyroid cancer. Int J Mol Sci. 2021;22(23):12992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lynch CA, Bethi M, Tang A, Lee P, Steward D, Holm TM. Thyroid nodules >4 cm with atypia of undetermined significance cytology independently associate with malignant pathology. Surgery. 2022;171(3):725–30. https://doi.org/10.1016/j.surg.2021.08.017. Epub 2021 Nov 4.

  10. Francis GL, Waguespack SG, Bauer AJ, Angelos P, Benvenga S, Cerutti JM, Dinauer CA, Hamilton J, Hay ID, Luster M, Parisi MT, Rachmiel M, Thompson GB, Yamashita S. American thyroid association guidelines task force. management guidelines for children with thyroid nodules and differentiated thyroid cancer. Thyroid. 2015;25(7):716–59.

  11. Ferraz C. Can current molecular tests help in the diagnosis of indeterminate thyroid nodule FNAB? Arch Endocrinol Metab. 2018;62(6):576–84.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Vargas-Salas S, Martínez JR, Urra S, et al. Genetic testing for indeterminate thyroid cytology: Review and meta-analysis. Endocr Relat Cancer. 2018;25(3):R163–77.

    Article  PubMed  Google Scholar 

  13. Patel KN, Angell TE, Babiarz J, et al. Performance of a genomic sequencing classifier for the preoperative diagnosis of cytologically indeterminate thyroid nodules. JAMA Surg. 2018;153(9):817–24.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Angell TE, Heller HT, Cibas ES, Barletta JA, Kim MI, Krane JF, Marqusee E. Independent comparison of the afirma genomic sequencing classifier and gene expression classifier for cytologically indeterminate thyroid nodules. Thyroid. 2019;29(5):650–6. https://doi.org/10.1089/thy.2018.0726. Epub 2019 Mar 22. PMID: 30803388.

  15. San Martin VT, Lawrence L, Bena J, Madhun NZ, Berber E, Elsheikh TM, Nasr CE. Real-world comparison of Afirma GEC and GSC for the assessment of cytologically indeterminate thyroid nodules. J Clin Endocrinol Metab. 2020;105(3):dgz099. https://doi.org/10.1210/clinem/dgz099. PMID: 31665322.

  16. Santos MTD, Buzolin AL, Gama RR, et al. Molecular classification of thyroid nodules with indeterminate cytology: Development and validation of a highly sensitive and specific new miRNA-based classifier test using fine-needle aspiration smear slides. Thyroid. 2018;28(12):1618–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Santos MT, Rodrigues BM, Shizukuda S, Oliveira AF, Oliveira M, Figueiredo DLA, Melo GM, Silva RA, Fainstein C, Dos Reis GF, Corbo R, Ramos HE, Camacho CP, Vaisman F, Vaisman M. Clinical decision support analysis of a microRNA-based thyroid molecular classifier: A real-world, prospective and multicentre validation study. EBioMedicine. 2022;82:104137. https://doi.org/10.1016/j.ebiom.2022.104137. Epub 2022 Jul 1.

  18. Labourier E, Shifrin A, Busseniers AE, et al. Molecular testing for miRNA, mRNA, and DNA on fine-needle aspiration improves the preoperative diagnosis of thyroid nodules with indeterminate cytology. J Clin Endocrinol Metab. 2015;100(7):2743–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lupo MA, Walts AE, Sistrunk JW, Giordano TJ, Sadow PM, Massoll N, Campbell R, Jackson SA, Toney N, Narick CM, Kumar G, Mireskandari A, Finkelstein SD, Bose S. Multiplatform molecular test performance in indeterminate thyroid nodules. Diagn Cytopathol. 2020;48(12):1254–64. https://doi.org/10.1002/dc.24564. Epub 2020 Aug 7.

  20. González HE, Martínez JR, Vargas-Salas S, et al. A 10-Gene classifier for indeterminate thyroid nodules: Development and multicenter accuracy study. Thyroid. 2017;27(8):1058–67.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zafereo M, McIver B, Vargas-Salas S, Domínguez JM, Steward DL, Holsinger FC, Kandil E, Williams M, Cruz F, Loyola S, Solar A, Roa JC, León A, Droppelman N, Lobos M, Arias T, Kong CS, Busaidy N, Grubbs EG, Graham P, Stewart J, Tang A, Wang J, Orloff L, Henríquez M, Lagos M, Osorio M, Schachter D, Franco C, Medina F, Wohllk N, Diaz RE, Veliz J, Horvath E, Tala H, Pineda P, Arroyo P, Vasquez F, Traipe E, Marín L, Miranda G, Bruce E, Bracamonte M, Mena N, González HE. A thyroid genetic classifier correctly predicts benign nodules with indeterminate cytology: two independent, multicenter, prospective validation trials. Thyroid. 2020;30(5):704–12. https://doi.org/10.1089/thy.2019.0490. Epub 2020 Feb 11.

  22. Nikiforova MN, Mercurio S, Wald AI, Barbi de Moura M, Callenberg K, Santana-Santos L, Gooding WE, Yip L, Ferris RL, Nikiforov YE. Analytical performance of the ThyroSeq v3 genomic classifier for cancer diagnosis in thyroid nodules. Cancer. 2018;124(8):1682–90. https://doi.org/10.1002/cncr.31245. Epub 2018 Jan 18.

  23. Desai D, Lepe M, Baloch ZW, Mandel SJ. ThyroSeq v3 for Bethesda III and IV: An institutional experience. Cancer Cytopathol. 2021;129(2):164–70. https://doi.org/10.1002/cncy.22362. Epub 2020 Oct 8.

  24. Jug R, Foo WC, Jones C, Ahmadi S, Jiang XS. High-risk and intermediate-high-risk results from the ThyroSeq v2 and v3 thyroid genomic classifier are associated with neoplasia: Independent performance assessment at an academic institution. Cancer Cytopathol. 2020;128(8):563–9. https://doi.org/10.1002/cncy.22283. Epub 2020 Apr 27. PMID: 32339438.

  25. Alexander EK, Kennedy GC, Baloch ZW, et al. Preoperative diagnosis of benign thyroid nodules with indeterminate cytology. N Engl J Med. 2012;367(8):705–15.

    Article  CAS  PubMed  Google Scholar 

  26. Valderrabano P, Hallanger-Johnson JE, Thapa R, Wang X, McIver B. Comparison of postmarketing findings vs the initial clinical validation findings of a thyroid nodule gene expression classifier: A systematic review and meta-analysis. JAMA Otolaryngol Head Neck Surg. 2019;e191449.

  27. Bartel DP. MicroRNAs: Target recognition and regulatory functions. Cell. 2009;136(2):215–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ricarte Filho JC, Kimura ET. MicroRNAs: Novel class of gene regulators involved in endocrine function and cancer. Arq Bras Endocrinol Metabol. 2006;50(6):1102–7.

    Article  PubMed  Google Scholar 

  29. Kimura ET, Nikiforova MN, Zhu Z, Knauf JA, Nikiforov YE, Fagin JA. High prevalence of BRAF mutations in thyroid cancer: Genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res. 2003;63(7):1454–7.

    CAS  PubMed  Google Scholar 

  30. Ferraz C, Eszlinger M, Paschke R. Current state and future perspective of molecular diagnosis of fine-needle aspiration biopsy of thyroid nodules. J Clin Endocrinol Metab. 2011;96(7):2016–26.

    Article  CAS  PubMed  Google Scholar 

  31. Nikiforov YE, Steward DL, Robinson-Smith TM, et al. Molecular testing for mutations in improving the fine-needle aspiration diagnosis of thyroid nodules. J Clin Endocrinol Metab. 2009;94(6):2092–8.

    Article  CAS  PubMed  Google Scholar 

  32. Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014;159(3):676–90.

    Article  Google Scholar 

  33. Krane JF, Cibas ES, Endo M, et al. The Afirma Xpression Atlas for thyroid nodules and thyroid cancer metastases: Insights to inform clinical decision-making from a fine-needle aspiration sample. Cancer Cytopathol. 2020. https://doi.org/10.1002/cncy.22300.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54.

    Article  CAS  PubMed  Google Scholar 

  35. Xing M. Prognostic utility of BRAF mutation in papillary thyroid cancer. Mol Cell Endocrinol. 2010;321(1):86–93.

    Article  CAS  PubMed  Google Scholar 

  36. Scheffel RS, Dora JM, Maia AL. BRAF mutations in thyroid cancer. Curr Opin Oncol. 2022;34(1):9–18.

    Article  CAS  PubMed  Google Scholar 

  37. Nikiforov YE. RET/PTC rearrangement in thyroid tumors. Endocr Pathol. 2002;13(1):3–16.

    Article  CAS  PubMed  Google Scholar 

  38. Thomas GA, Bunnell H, Cook HA, et al. High prevalence of RET/PTC rearrangements in Ukrainian and Belarussian post-Chernobyl thyroid papillary carcinomas: A strong correlation between RET/PTC3 and the solid-follicular variant. J Clin Endocrinol Metab. 1999;84(11):4232–8.

    CAS  PubMed  Google Scholar 

  39. Cordioli MI, Moraes L, Bastos AU, et al. Fusion oncogenes are the main genetic events found in sporadic papillary thyroid carcinomas from children. Thyroid. 2017;27(2):182–8.

    Article  CAS  PubMed  Google Scholar 

  40. Tavares C, Melo M, Cameselle-Teijeiro JM, Soares P, Sobrinho-Simões M. Endocrine tumours: Genetic predictors of thyroid cancer outcome. Eur J Endocrinol. 2016;174(4):R117–26.

    Article  CAS  PubMed  Google Scholar 

  41. Armstrong MJ, Yang H, Yip L, et al. PAX8/PPARγ rearrangement in thyroid nodules predicts follicular-pattern carcinomas, in particular the encapsulated follicular variant of papillary carcinoma. Thyroid. 2014;24(9):1369–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xing M. Clinical utility of RAS mutations in thyroid cancer: A blurred picture now emerging clearer. BMC Med. 2016;14:12.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Garcia-Rostan G, Zhao H, Camp RL, et al. Ras mutations are associated with aggressive tumor phenotypes and poor prognosis in thyroid cancer. J Clin Oncol. 2003;21(17):3226–35.

    Article  CAS  PubMed  Google Scholar 

  44. Liu R, Xing M. TERT promoter mutations in thyroid cancer. Endocr Relat Cancer. 2016;23(3):R143–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Melo M, da Rocha AG, Vinagre J, et al. TERT promoter mutations are a major indicator of poor outcome in differentiated thyroid carcinomas. J Clin Endocrinol Metab. 2014;99(5):E754–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu X, Bishop J, Shan Y, et al. Highly prevalent TERT promoter mutations in aggressive thyroid cancers. Endocr Relat Cancer. 2013;20(4):603–10.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Penna GC, Pestana A, Cameselle JM, et al. TERTp mutation is associated with a shorter progression free survival in patients with aggressive histology subtypes of follicular-cell derived thyroid carcinoma. Endocrine. 2018;61(3):489–98.

    Article  CAS  PubMed  Google Scholar 

  48. Soares P, Lima J, Preto A, et al. Genetic alterations in poorly differentiated and undifferentiated thyroid carcinomas. Curr Genom. 2011;12(8):609–17.

    Article  CAS  Google Scholar 

  49. Ricarte-Filho JC, Ryder M, Chitale DA, et al. Mutational profile of advanced primary and metastatic radioactive iodine-refractory thyroid cancers reveals distinct pathogenetic roles for BRAF, PIK3CA, and AKT1. Cancer Res. 2009;69(11):4885–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lima CR, Geraldo MV, Fuziwara CS, Kimura ET, Santos MF. MiRNA-146b-5p upregulates migration and invasion of different Papillary Thyroid Carcinoma cells. BMC Cancer. 2016;16:108.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hamidi S, Hofmann MC, Iyer PC, Cabanillas ME, Hu MI, Busaidy NL, Dadu R. Review article: New treatments for advanced differentiated thyroid cancers and potential mechanisms of drug resistance. Front Endocrinol (Lausanne). 2023;14:1176731. https://doi.org/10.3389/fendo.2023.1176731. PMID: 37435488; PMCID: PMC10331470.

  52. Kaya C, Dorsaint P, Mercurio S, Campbell AM, Eng KW, Nikiforova MN, Elemento O, Nikiforov YE, Sboner A. Limitations of detecting genetic variants from the RNA sequencing data in tissue and fine-needle aspiration samples. Thyroid. 2021;31(4):589–95. https://doi.org/10.1089/thy.2020.0307. Epub 2020 Oct 13. PMID: 32948110; PMCID: PMC8195874.

  53. Subbiah V, Kreitman RJ, Wainberg ZA, Cho JY, Schellens JHM, Soria JC, et al. Dabrafenib and trametinib treatment in patients with locally advanced or metastatic BRAF V600-mutant anaplastic thyroid cancer. J Clin Oncol. 2018;36(1):7–13. https://doi.org/10.1200/JCO.2017.73.6785.

    Article  CAS  PubMed  Google Scholar 

  54. Mansfield AS, Subbiah V, Schuler MH, Zhu VW, Hadoux J, Brose MS, et al. Pralsetinib in patients (pts) with advanced or metastatic RET-altered thyroid cancer (TC): Updated data from the ARROW trial. J Clin Oncol. 2022;40(16_suppl):6080. https://doi.org/10.1200/JCO.2022.40.16_suppl.6080.

  55. Subbiah V, Hu MI, Wirth LJ, Schuler M, Mansfield AS, Curigliano G, et al. Pralsetinib for patients with advanced or metastatic RET-altered thyroid cancer (ARROW): A multi-cohort, open-label, registrational, phase 1/2 study. Lancet Diabetes Endocrinol. 2021;9(8):491–501. https://doi.org/10.1016/S2213-8587(21)00120-0.

    Article  CAS  PubMed  Google Scholar 

  56. Pekova B, Sykorova V, Mastnikova K, Vaclavikova E, Moravcova J, Vlcek P, et al. NTRK fusion genes in thyroid carcinomas: Clinicopathological characteristics andtheir impacts on prognosis. Cancers (Basel). 2021;13(8):1932. https://doi.org/10.3390/cancers13081932.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolina Ferraz.

Ethics declarations

Conflict of interest

No conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferraz, C. Molecular testing for thyroid nodules: Where are we now?. Rev Endocr Metab Disord 25, 149–159 (2024). https://doi.org/10.1007/s11154-023-09842-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-023-09842-0

Keywords

Navigation