Skip to main content
Log in

Dunford–Pettis type properties and the Grothendieck property for function spaces

  • Published:
Revista Matemática Complutense Aims and scope Submit manuscript

Abstract

For a Tychonoff space X, let \(C_k(X)\) and \(C_p(X)\) be the spaces of real-valued continuous functions C(X) on X endowed with the compact-open topology and the pointwise topology, respectively. If X is compact, the classic result of A. Grothendieck states that \(C_k(X)\) has the Dunford–Pettis property and the sequential Dunford–Pettis property. We extend Grothendieck’s result by showing that \(C_k(X)\) has both the Dunford–Pettis property and the sequential Dunford–Pettis property if X satisfies one of the following conditions: (1) X is a hemicompact space, (2) X is a cosmic space (= a continuous image of a separable metrizable space), (3) X is the ordinal space \([0,\kappa )\) for some ordinal \(\kappa \), or (4) X is a locally compact paracompact space. We show that if X is a cosmic space, then \(C_k(X)\) has the Grothendieck property if and only if every functionally bounded subset of X is finite. We prove that \(C_p(X)\) has the Dunford–Pettis property and the sequential Dunford–Pettis property for every Tychonoff space X, and \(C_p(X) \) has the Grothendieck property if and only if every functionally bounded subset of X is finite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albanese, A.A., Bonet, J., Ricker, W.J.: Grothendieck spaces with the Dunford–Pettis property. Positivity 14, 145–164 (2010)

    Article  MathSciNet  Google Scholar 

  2. Albanese, A.A., Bonet, J., Ricker, W.J.: \(C_0\)-semigroups and mean ergodic operators in a class of Fréchet spaces. J. Math. Anal. Appl. 365, 142–157 (2010)

    Article  MathSciNet  Google Scholar 

  3. Albanese, A.A., Bonet, J., Ricker, W.J.: Mean ergodic semigroups of operators. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM 106, 299–319 (2012)

    Article  MathSciNet  Google Scholar 

  4. Albanese, A.A., Mangino, E.M.: Some permanence results of the Dunford–Pettis and Grothendieck properties in lcHs. Funct. Approx. Comment. Math. 44, 243–258 (2011)

    Article  MathSciNet  Google Scholar 

  5. Banakh, T., Gabriyelyan, S., Protasov, I.: On uniformly discrete subsets in uniform spaces and topological groups. Matematychni Studii 1(45), 76–97 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Bombal, F., Villanueva, I.: On the Dunford–Pettis property of the tensor product of \(C(K)\) spaces. Proc. Am. Math. Soc. 129, 1359–1363 (2001)

    Article  MathSciNet  Google Scholar 

  7. Bonet, J., Lindström, M.: Convergent sequences in duals of Fréchet spaces. In: Functional Analysis, Proceedings of the Essen Conference, Marcel Dekker, New York, pp. 391–404 (1993)

  8. Bonet, J., Ricker, W.: Schauder decompositions and the Grothendieck and Dunford-Pettis properties in Köthe echelon spaces of infinite order. Positivity 11, 77–93 (2007)

    Article  MathSciNet  Google Scholar 

  9. Borwein, J., Fabian, M., Vanderwerff, J.: Characterizations of Banach spaces via convex and other locally Lipschitz functions. Acta Math. Vietnam. 22, 53–69 (1997)

    MathSciNet  MATH  Google Scholar 

  10. Bourgain, J.: On the Dunford–Pettis property. Proc. Am. Math. Soc. 81, 265–272 (1981)

    Article  MathSciNet  Google Scholar 

  11. Bourgain, J.: The Dunford–Pettis property for the ball-algebras, the polydisc algebras and the Sobolev spaces. Studia Math. 77, 245–253 (1984)

    Article  MathSciNet  Google Scholar 

  12. Cima, J.A., Timoney, R.M.: The Dunford–Pettis property for certain planar uniform algebras. Mich. Math. J. 34, 99–104 (1987)

    Article  MathSciNet  Google Scholar 

  13. Dales, H.G., Dashiell Jr., F.K., Lau, A.T.-M., Strauss, D.: Banach Spaces of Continuous Functions as Dual Spaces. Springer, Berlin (2016)

    Book  Google Scholar 

  14. Diestel, J.: A survey of results related to the Dunford–Pettis property. Contemp. Math. AMS 2, 15–60 (1980)

    Article  MathSciNet  Google Scholar 

  15. Diestel, J.: Sequences and Series in Banach Spaces, Garduate Text in Mathematics 92. Springer, Berlin (1984)

    Book  Google Scholar 

  16. Diestel, J., Uhl Jr., J.J.: Vector Measures, Math. Surveys No. 15. Amer. Math. Soc., Providence (1977)

    Book  Google Scholar 

  17. Edwards, R.E.: Functional Analysis. Reinhart and Winston, New York (1965)

    MATH  Google Scholar 

  18. Engelking, R.: General Topology. Heldermann Verlag, Berlin (1989)

    MATH  Google Scholar 

  19. Ferrando, J.C., Ka̧kol, J., Saxon, S.: The dual of the locally convex space \(C_p(X)\). Funct. Approx. Comment. Math. 50, 389–399 (2014)

    Article  MathSciNet  Google Scholar 

  20. Gabriyelyan, S.: Locally convex spaces and Schur type properties. Ann. Acad. Sci. Fenn. Math. 44, 363–378 (2019)

    Article  MathSciNet  Google Scholar 

  21. Grothendieck, A.: Sur les applications linéaires faiblement compactes d’espaces du type \(C(K)\). Can. J. Math. 5, 129–173 (1953)

    Article  Google Scholar 

  22. Jarchow, H.: Locally Convex Spaces. B.G. Teubner, Stuttgart (1981)

    Book  Google Scholar 

  23. Ka̧kol, J., Kubiś, W., Lopez-Pellicer, M.: Descriptive Topology in Selected Topics of Functional Analysis, Developments in Mathematics. Springer, Berlin (2011)

  24. Ka̧kol, J., Saxon, S.A., Tood, A.: Weak barreldness for \(C(X)\) spaces. J. Math. Anal. Appl. 297, 495–505 (2004)

    Article  MathSciNet  Google Scholar 

  25. McCoy, R.A., Ntantu, I.: Topological Properties of Spaces of Continuous Functions. Lecture Notes in Math. Springer, Berlin, 1315 (1988)

  26. Michael, E.: \(\aleph _{0}\)-spaces. J. Math. Mech. 15, 983–1002 (1966)

    MathSciNet  Google Scholar 

  27. Narici, L., Beckenstein, E.: Topological Vector Spaces, 2nd edn. CRC Press, New York (2011)

    MATH  Google Scholar 

  28. Orihuela, J.: Pointwise compactness in spaces of continuous functions. J. Lond. Math. Soc. 36, 143–152 (1987)

    Article  MathSciNet  Google Scholar 

  29. Pérez Carreras, P., Bonet, J.: Barrelled Locally Convex Spaces, North-Holland Mathematics Studies 131. North-Holland, Amsterdam (1987)

    MATH  Google Scholar 

  30. Ruess, W.: Locally convex spaces not containing \(\ell _{1}\). Funct. Approx. Comment. Math. 50, 351–358 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are deeply indebted to the referees for careful reading and useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saak Gabriyelyan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The second named author gratefully acknowledges the financial support he received from the Center for Advanced Studies in Mathematics of the Ben Gurion University of the Negev during his visit April, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabriyelyan, S., Ka̧kol, J. Dunford–Pettis type properties and the Grothendieck property for function spaces. Rev Mat Complut 33, 871–884 (2020). https://doi.org/10.1007/s13163-019-00336-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13163-019-00336-9

Keywords

Mathematics Subject Classification

Navigation