Skip to main content
Log in

Observations on some classes of operators on C(K,X)

  • Published:
Analysis Mathematica Aims and scope Submit manuscript

Abstract

Suppose X and Y are Banach spaces, K is a compact Hausdorff space, \(\Sigma\) is the \(\sigma\)-algebra of Borel subsets of K, \(C(K,X)\) is the Banach space of all continuous X-valued functions (with the supremum norm), and \(T \colon C(K,X)\to Y\) is a strongly bounded operator with representing measure \(m \colon \Sigma \to L(X,Y)\). We show that if \(\hat{T} \colon B(K, X) \to Y\) is its extension, then T is weak Dunford--Pettis (resp.weak* Dunford--Pettis, weak p-convergent, weak* p-convergent) if and only if \(\hat{T}\) has the same property.

We prove that if \(T \colon C(K,X)\to Y\) is strongly bounded limited completely continuous (resp. limited p-convergent), then \(m(A) \colon X\to Y\) is limited completely continuous (resp. limited p-convergent) for each \(A\in \Sigma\). We also prove that the above implications become equivalences when K is a dispersed compact Hausdorff space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Abbott, E. Bator, R. Bilyeu and P. Lewis, Weak precompactness, strong boundedness, and weak complete continuity, Math. Proc. Cambridge Philos. Soc., 108(1990), 325–335.

  2. C. D. Aliprantis and O. Burknishaw, Positive Operators, Springer (Dordrecht, 2006).

  3. M. Alikhani, A study on Dunford–Pettis completely continuous like operators. Iran. J. Sci. Technol. Trans. A Sci., 43 (2019), 2569—2577.

  4. S. I. Ansari, On Banach spaces Y for which \(B(C(\Omega), Y)= K(C(\Omega), Y)\)

  5. E. Bator and P. Lewis, Operators having weakly precompact adjoints, Math. Nachr., 157 (1992), 99–103.

  6. J. Batt and E. J. Berg, Linear bounded transformations on the space of continuous functions, J. Funct. Anal., 4 (1969), 215–239.

  7. F. Bombal, On the Dunford–Pettis property, Portugal. Math., 45 (1988), 265–272.

  8. F. Bombal and P. Cembranos, Characterizations of some classes of operators on spaces of vector-valued continuous functions, Math. Proc. Cambridge Philos. Soc., 97 (1985), 137–146.

  9. F. Bombal and B. Porras, Strictly singular and strictly cosingular operators on F. Bombal and B. Porras, Strictly singular and strictly cosingular operators on \(C(K,E)\), Math. Nachr., 143 (1989), 355–364. C(K,E), Math. Nachr., 143 (1989), 355–364.

  10. F. Bombal and B. Rodriguez-Salinas, Some classes of operators on \(C(K,E)\). Extensions and applications, Arch. Math., 47 (1986), 55–65.

  11. J. K. Brooks and P. Lewis, Linear Operators and Vector Measures, Trans. Amer. Math. Soc., 192 (1974), 139–162.

  12. J. K. Brooks and P. Lewis, Operators on continuous function spaces and convergence in the spaces of operators, Adv. in Math., 29 (1978), 157–177.

  13. J. Bourgain and J. Diestel, Limited operators and strict cosingularity, Math. Nachr., 119 (1984), 55–58.

  14. J. Castillo and F. Sánchez, Dunford–Pettis like properties of continuous vector function spaces, Rev. Mat. Univ. Complut. Madrid, 6 (1993), 43–59.

  15. H. Carrión, P. Galindo and M. L. Lourenço, A stronger Dunford–Pettis property, Studia Math., 3 (2008), 205–216.

  16. P. Cembranos and J. Mendoza, Banach Spaces of Vector-Valued Functions, Lecture Notes in Math., vol. 1676, Springer-Verlag (Berlin, 1997).

  17. J. Diestel, Sequences and Series in Banach Spaces, Grad. Texts in Math., vol. 92, Springer-Verlag (Berlin, 1984).

  18. J. Diestel, H. Jarchow and A. Tonge, Absolutely Summing Operators, Cambridge Stud. Adv. Math., vol. 43, Cambridge University Press (1995).

  19. J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys, vol. 15, Amer. Math. Soc. (Providence, RI, 1977).

  20. N. Dinculeanu, Vector Measures, Pergamon Press (Berlin, 1967).

  21. I. Dobrakov, On representation of linear operators on \(C_0 (T, X)\), Czechoslovak. Math. J., 21 (1971), 13–30.

  22. J. H. Fourie and E. D. Zeekoei, On weak-star-p-convergent operators, Quaest. Math., 40 (2017), 563–579.

  23. I. Ghenciu, On some classes of operators on \(C(K,X)\), Bull. Polish. Acad. Sci. Math., 63 (2015), 261–274.

  24. I. Ghenciu, L-Sets and property \((SR^*)\) in spaces of compact operators, Monatsh. Math., 181 (2016), 609–628.

  25. I. Ghenciu, A note on some isomorphic properties in projective tensor products, Extracta Math., 32 (2017), 1–24.

  26. I. Ghenciu, An isomorphic property in spaces of compact operators and some classes of operators on \(C(K,X)\), Acta Math. Hungar., 157 (2019), 63–79.

  27. I. Ghenciu, Some classes of Banach spaces and complemented subspaces of operators, Adv. Oper. Theory, 4 (2019), 369–387.

  28. I. Ghenciu, On some classes of Dunford–Pettis-like operators, Rend. Circ. Mat. Palermo (2), 69 (2020), 1149–1163.

  29. I. Ghenciu, On some classes of Dunford–Pettis-like operators, Rend. Circ. Mat. Palermo (2), 69 (2020), 1149–1163.

  30. I. Ghenciu and P. Lewis, Strongly bounded representing measures and convergence theorems, Glasgow Math. J., doi.org/10.1017/S0017089510000133.

  31. A. El Kaddouri, J. H’michane, K. Bouras and M. Moussa, On the class of weak* Dunford–Pettis operators, Rend. Circ. Mat. Palermo (2), 62, (2013), 261–265.

  32. H. E. Lacey, The Isometric Theory of Classical Banach Spaces, Springer-Verlag (Berlin, 1974).

  33. R. E. Megginson, An Introduction to Banach Space Theory, Grad. Texts in Math., vol. 183, Springer (New York, 1998).

  34. A. Pełczyński and Z. Semadeni, Spaces of continuous functions (III), Studia Math., 18 (1959), 211–222.

  35. A. Peralta, I. Villanueva, J. D. M. Wright and K. Ylinen, Topological characterization of weakly compact operators, J. Math. Anal. Appl., 325 (2007), 968–974.

  36. R. A. Ryan, Introduction to Tensor Products of Banach Spaces, Springer (London, 2002).

  37. P. Saab, Weakly compact, unconditionally converging and Dunford–Pettis operators on spaces of vector-valued continuous functions, Math. Proc. Cambridge Philos. Soc., 95 (1984), 101–108.

  38. M. Salimi and M. Moshtaghioun, The Gelfand–Phillips property in closed subspaces of some operator spaces, Banach J. Math. Anal., 5 (2011), 84–92.

  39. M. Salimi and M. Moshtaghioun, A new class of Banach spaces and its relation with some geometric properties of Banach spaces, Abstr. Appl. Anal. (2012), Art. ID 212957, 8 pp.

  40. Z. Semadeni, Banach Spaces of Continuous Functions, Monogr. Mat., vol. 55, PWN–Polish Scientific Publishers (Warsaw, 1971).

  41. Y. Wen and J. Chen, Characterizations of Banach spaces with relatively compact Dunford–Pettis sets, Adv. Math. (China), 45 (2016), 122–132.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Ghenciu.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghenciu, I., Popescu, R. Observations on some classes of operators on C(K,X). Anal Math (2024). https://doi.org/10.1007/s10476-024-00009-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10476-024-00009-w

Keywords and phrases

Mathematics Subject Classification

Navigation