Skip to main content
Log in

Carbon Storage in Secondary Mangroves along the West Coastline of Maputo City, Mozambique

  • Original Research
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Mangroves are often excluded when estimating carbon (C) from global and tropical forests. Therefore, C estimates of global and tropical forests are likely to be underestimated. On the other hand, allometric biomass models and C stocks estimates are lacking for juvenile mangrove trees (seedling and sapling), yet required for increasing of young successional mangrove forests as result of disturbances. In this study, allometric biomass models were fitted and ecosystem C stock estimated for a juvenile secondary mangrove forest, using a non-destructive biomass sampling. Besides the advantage of enforcing additivity and being least biased, the models fitted simultaneously using nonlinear seemingly unrelated regression (NSUR) with parameter restriction were superior with regard to predictive accuracy and ability compared to those fitted independently. The surface soil accounted for the majority of the ecosystem C stock (90%). Aboveground biomass ranked next with 9.6% of the ecosystem C stock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adame MF, Kauffman JB, Medina I et al (2013) Carbon stocks of tropical coastal wetlands within the karstic landscape of the Mexican Caribbean. PLoS One 8(2):e56569. https://doi.org/10.1371/journal.pone.0056569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akaike H (1973) Information theory as an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds.) Second international symposium on information theory. Budapest, Akademiai Kiado, pp 267–281.

  • Alfons A (2015) cvTools: cross-validation tools for regression models (R Package Version 0.3.2). R Foundation for Statistical Computing, Vienna

  • Amade FMZ (2006) Estudo da Estrutura de três Comunidades de Mangal (A.marina, C.tagal e R.mucronata) em três locais na Baía de Maputo, Costa do Sol, Ponta Rasa e Saco da Inhaca. B.Sc. Thesis, UEM, Maputo.

  • Anderson-Texeira KJ, McGarvey JC, Muller-Landau HC et al (2015) Size-related scaling of tree form and function in a mixed-age forest. Functional Ecology 29:1587–1602. https://doi.org/10.1111/1365-2435.12470

    Article  Google Scholar 

  • Annighöfer P, Ameztegui A, Ammer C et al (2016) Species-specific and generic biomass equations for seedlings and saplings of European tree species. European Journal of Forest Research 135:313–329. https://doi.org/10.1007/s10342-016-0937-z

    Article  Google Scholar 

  • Baccini A, Goetz SJ, Walker WS et al (2012) Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nature Climate Change 2:182–185

    Article  CAS  Google Scholar 

  • Barbosa FMA, Cuambe CC, Bandeira SO (2001) Status and distribution of mangroves in Mozambique. South African Journal of Botany 67:393–398

    Article  Google Scholar 

  • Bolte A, Rahmann T, Kuhr M et al (2004) Relationships between tree dimension and coarse root biomass in mixed stands of European beech (Fagus sylvatica L.) and Norway spruce (Picea abies [L.] Karst.). Plant and Soil 264:1–11

    Article  CAS  Google Scholar 

  • Bouwer R, Falcão MP (2004) Wood fuel consumption in Maputo, Mozambique. Biomass and Bioenergy 27:233–245

    Article  Google Scholar 

  • Brasil MAM, Veiga RAA, Timoni JL (1994) Erros na determinação da densidade básica da madeira. CERNE 1(1):55–57

    Google Scholar 

  • Bunster J (2006) Commercial timbers of Mozambique. Technological catalogue. Traforest Lda, Maputo.

  • Chao KJ, Philips OL, Baker TR (2008) Wood density and stocks of coarse woody debris in a northwestern Amazonian landscape. Canadian Journal of Forest Research 38:795–805

    Article  Google Scholar 

  • CMM (2010) Perfil estatístico do município de Maputo. Conselho Municipal de Maputo, Maputo

    Google Scholar 

  • de Gier IA (1992) Forest mensuration (fundamentals). ITC, The Netherlands

    Google Scholar 

  • de Jong TJ, Klinkhamer PGI (2005) Evolutionary ecology of plant reproductive strategies. Cambridge University Press, New York

    Google Scholar 

  • Dibdiakova J, Vadla K (2012) Basic density and moisture content of coniferous branches and wood in Northern Norway. EPJ Web of Conferences 33. https://doi.org/10.1051/epjconf20123/302005.

  • DINAGECA (1997) Mapa digital de uso e cobertura de terra. Cenacarta, Maputo

    Google Scholar 

  • Donato DC, Kauffman JB, Murdiyarso D et al (2011) Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience 4:293–297

    Article  CAS  Google Scholar 

  • Dong L, Zhang L, Li F (2016) Developing two additive biomass equations for three coniferous plantation species in Northeast China. Forests 7(136):1–21

    CAS  Google Scholar 

  • Elias M, Potvin C (2003) Assessing inter- and intra-specific variation in trunk carbon concentration for 32 Neotropical tree species. Canadian Journal of Forest Research 33:1039–1045

    Article  Google Scholar 

  • FAO (2003) FAO map of world soil resources. Rome, Food and Agriculture Organisation of the United Nations, Rome

  • FAO (2007) The World’s mangroves 1980 – 2005. FAO Forestry Paper 153.

  • Fatoyinbo TE, Simard M, Washington-Allen RA et al (2008) Landscape-scale extent, height, biomass, and carbon estimation of Mozambique’s mangrove forests with Landsat ETM+ and shuttle radar topography Mission elevation data. Journal of Geophysical Research 113:1–13

    Article  Google Scholar 

  • Furnival GM (1961) An index for comparing equations used in constructing volume tables. Forest Science 7:337–341

    Google Scholar 

  • Galik CS, Mobley ML, Richter D (2009) A virtual “field test” of forest management carbon offset protocols: the influence of accounting. Mitigation and Adaptation Strategies for Global Change 14:677–690

    Article  Google Scholar 

  • Geri C, Ochieng E, Tieszen LL et al (2011) Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography 20:154–159

    Article  Google Scholar 

  • Hamilton SE, Lovette J (2015) Ecuador’s mangrove forest carbon stocks: a spatiotemporal analysis of living carbon holdings and their depletion since the advent of commercial aquaculture. PLoS One 10(3):e0118880. https://doi.org/10.1371/journal.pone.0118880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harmon M, Hua C (1991) Coarse wood debris dynamics in two old-growth ecosystems: comparing a deciduous forest in China and a conifer forest in Oregon. BioScience 41(9):604–610

    Article  Google Scholar 

  • Harmon ME, Franklin JF, Swanson FJ et al (1986) Ecology of coarse woody debris in temperate ecosystems. Advances in Ecological Research 15

  • Hoguane AM (2007) Perfil diagnóstico da zona costeira de Moçambique. Revista de Gestão Costeira Integrada 7(1):69–82

    Article  Google Scholar 

  • Husch B, Beers TW, Kershaw JA Jr (2003) Forest mensuration, 4th edn. John Willey & Sons, New York

    Google Scholar 

  • IPCC (2003) Good Practice Guidance for Land Use, Land-Use Change and Forestry. In: Penman J, Gytarsky M, Hiraishi T et al (eds) Intergovernmental Panel on Climate Change. IGES, Hayama

    Google Scholar 

  • IPCC (2006) Guidelines for national greenhouse gas inventories. In: Eggleston S, Buendia L, Miwa K et al (eds) Agriculture, Forestry and Other Land Use, vol 4. IGES, Hayama

    Google Scholar 

  • Jachowski NRA, Quak MSY, Friess DA et al (2013) Mangrove biomass estimation in Southwest Thailand using machine learning. Applied Geography 45:311–321

    Article  Google Scholar 

  • Kauffman JB, Helder C, Cole TG et al (2011) Ecosystem carbon stocks of Micronesian mangrove forests. Wetlands 31:343–352

    Article  Google Scholar 

  • King DA (2011) Size-related changes in tree proportions and their potential influence on the course of height growth. In: Meinzer FC, Lachenbruch B, Dawson TE (eds) Size- and age-related changes in tree structure and function. Springer, New York, pp 165–192

    Chapter  Google Scholar 

  • Kristensen E, Bouillon S, Dittmar T et al (2008) Organic carbon dynamics in mangrove ecosystems: a review. Aquatic Botany 89:201–219

    Article  CAS  Google Scholar 

  • Ladd B, Laffan SW, Amelung W et al (2012) Estimates of soil carbon concentration in tropical and temperate forest and woodland from available GIS data on three continents. Global Ecology and Biogeography 22:461–469. https://doi.org/10.1111/j.1466-8238.2012.00799.x

    Article  Google Scholar 

  • Magalhães TM (2015) Allometric equations for estimating belowground biomass of Androstachys johnsonii Prain. Carbon Balance and Management 10:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Magalhães TM, Seifert T (2015) Tree component biomass expansion factors and root-to-shoot ratio of Lebombo ironwood: measurement uncertainty. Carbon Balance and Management 10:9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merganičová K, Merganič J (2010) Coarse woody debris carbon stocks in natural spruce forests of Babia hora. Journal of Forest Science 56(9):397–405

    Article  Google Scholar 

  • Meriem S, Tjitrosoedirjo S, Kotowska MM et al (2016) Carbon and nitrogen stocks in dead wood of tropical lowland forests as dependent on wood decay stages and land-use intensity. Annals of Forest Research 59(2):299–310

    Article  Google Scholar 

  • Nam VM, Sasmito SD, Murdiyarso D et al (2016) Carbon stocks in artificially and naturally regenerated mangrove ecosystems in the Mekong Delta. Wetlands Ecology and Management 24:231–244

    Article  CAS  Google Scholar 

  • Nord-Larsen T, Meilby H, Skovsgaard JP (2017) Simultaneous estimation of biomass models for 13 tree species: effects of compatible additivity requirements. Canadian Journal of Forest Research 47:765–776. https://doi.org/10.1139/cjfr-2016-0430

    Article  CAS  Google Scholar 

  • Okai R, Frimpong-Mensah K, Yeboah D (2004) Characterization of strength properties of branchwood and stemwood of some tropical hardwood species. Wood Science and Technology 38:163–171

    Article  CAS  Google Scholar 

  • Pan Y, Birdsey RA, Fang J et al (2011) A large and persistent carbon sink in the World’s forests. Science 133:988–993

    Article  CAS  Google Scholar 

  • Parresol B (2001) Additivity of nonlinear biomass equations. Canadian Journal of Forest Research 31:865–878

    Article  Google Scholar 

  • Pearson T, Walker SM, Brown S (2005) Sourcebook for land use, land-use change and forestry projects. Winrock International, Washington DC

    Google Scholar 

  • R Core Team (2016) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Salis SM, Assis MA, Mattos PP et al (2006) Estimating the aboveground biomass and wood volume of savannah woodlands in Brazil’s Pantanal wetlands based on allometric correlations. Forest Ecology Management 228:61–68

    Article  Google Scholar 

  • Sanquetta CR, Behling A, Corte APD et al (2015) Simultaneous estimation as alternative to independent modeling of tree biomass. Annals of Forest Science 72:1099–1112

    Article  Google Scholar 

  • Sarmiento C, Patiño S, Paine CET et al (2011) Within-individual variation of trunk and branch xylem density in tropical trees. American Journal of Botany 98(1):140–149

    Article  PubMed  Google Scholar 

  • SAS Institute Inc. (1999) SAS/ETS User’s Guide, Version 8. SAS Institute Inc., Cary

    Google Scholar 

  • Schroeder P, Brown S, Mo J et al (1997) Biomass estimation for temperate broadleaf forest of the United States using inventory data. Forest Science 43:424–434

    Google Scholar 

  • Seifert T, Seifert S (2014) Modelling and simulation of tree biomass. In: Seifert T (ed) Bioenergy from wood: sustainable production in the tropics. Springer, New York, pp 43–66

    Chapter  Google Scholar 

  • Sharma M, Zhang SY (2004) Height–diameter models using stand characteristics for Pinus banksiana and Picea mariana. Scandinavian Journal of Forest Research 19:442–451

    Article  Google Scholar 

  • Siliprande NC, Nogueira EM, Toledo JJ et al (2016) Inter-site variation in allometry and wood density of Goupia glabra Aubl. in Amazonia. Brazilian Journal of Biology. https://doi.org/10.1590/1519-6984.22514.

  • Sitoe AA, Mondlate LJC, Guedes BS (2014) Biomass and carbon stocks of Sofala bay mangrove forests. Forests 5:1967–1981

    Article  Google Scholar 

  • Spiess A, Neumeyer N (2010) An evaluation of R as an inadequate measure for nonlinear models in pharmacological and biochemical research: a Monte Carlo approach. BMC Pharmacology 10:6

    Article  PubMed  PubMed Central  Google Scholar 

  • Stringer CE, Trettin CC, Zarnoch CJ, Tang W (2015) Carbon stocks of mangroves within the Zambezi River Delta, Mozambique. Forest Ecology and Management 354:139–148

    Article  Google Scholar 

  • Swenson NG, Enquist BJ (2008) The relationship between stem and branch wood specific gravity and the ability of each measure to predict leaf area. American Journal of Botany 95(4):516–519

    Article  PubMed  Google Scholar 

  • Taylor M, Ravilious C, Green EP (2003) Mangroves of East Africa. UNEP-WCMC, Cambridge

    Google Scholar 

  • Ter-Mikaelian MT, Korzukhin MD (1997) Biomass equation for sixty five north American tree species. Forest Ecology and Management 97:1–27

    Article  Google Scholar 

  • Tran P, Gritcan I, Cusens J et al (2016) Biomass and nutrient composition of temperate mangroves (Avicennia marina var. australasica) in New Zealand. New Zealand Journal of Marine and Freshwater Research 51:427–442. https://doi.org/10.1080/00288330.2016.1260604

    Article  CAS  Google Scholar 

  • Zarin DJ (2012) Carbon from tropical deforestation. Science 336:1518–1519

    Article  CAS  PubMed  Google Scholar 

  • Zhou ZY, Osbert J, Huang JH et al (2007) Soil carbon and nitrogen stores and storage potentials affected by land-use in an agro-pastoral ecotone of northern China. Biogeochemistry 82:127–138

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks are addressed to the field team and to the anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarquinio Mateus Magalhães.

Ethics declarations

Conflict of Interest

There is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magalhães, T.M. Carbon Storage in Secondary Mangroves along the West Coastline of Maputo City, Mozambique. Wetlands 39, 239–249 (2019). https://doi.org/10.1007/s13157-018-1104-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-018-1104-8

Keywords

Navigation