Skip to main content

Advertisement

Log in

Expansion and sea-level change of paleocanyon Seymareh Member (Lopha limestone), Zagros, and Iran

  • Original Article
  • Published:
Carbonates and Evaporites Aims and scope Submit manuscript

Abstract

This study is made clear expansion, depositional architecture, and sea-level change of the Seymareh Member. The Campanian carbonate sequence (Seymareh Member) of the Lurestan Zone, contains a rich macrofauna. Amid the bivalves, oysters (Lopha sp.) and echnoids are abundant and are mostly well conserved, in some beds dominating the fauna. Rich fossiliferous strata of Seymareh Member are 10–300 m and widespread in the south Lurestan Zone. A submarine canyon in the shelf is suggested for the depositional environment of the Seymareh Member which deepens to the east (Anaran and Surgah, Emam-Hasan anticline) and thins in west locations (Pasan, Soltan and Kabir-Kuh anticline). This present study is novel because few papers provide a complete overview of the frequency Seymareh canyons and out into deep water basins. The paleocanyon deposits conserved south Lurestan Zone provide an occasion for extending sequence stratigraphic ideas and thought associated with submarine canyons and deep-sea deposits. The Seymareh Member were deposited at a more toward the sea situated continental slope or outer belt region of the Late Cretaceous upwelling system and 4th order cyclic sequences in the Seymareh Member are recognised. Below these lowstand conditions, oyster shells were poured off the bioherms and deposited as large cross-bedded units on the flanks of the basins. At the same time, antecedent glauconite and phosphatic deposits were reworked and winnowed to form high-grade phosphorite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahmad F, Farouk S, El-Kahtany K, Al-Zubi H, Diabat A (2015) Late Cenomanian oysters from Egypt and Jordan. J Afr Earth Sc 109:283–295

    Article  Google Scholar 

  • Alavi M (2004) Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution. Am J Sci 304(1):1–20

    Article  Google Scholar 

  • Amblas D, Ceramicola S, Gerber TP, Canals M, Chiocci FL, Dowdeswell JA, Lastras G (2018) Submarine canyons and gullies. Submarine geomorphology. Springer, pp 251–272

    Chapter  Google Scholar 

  • Amorosi A, Guidi R, Mas R, Falanga E (2012) Glaucony from the Cretaceous of the Sierra de Guadarrama (Central Spain) and its application in a sequence-stratigraphic context. Int J Earth Sci 101(2):415–427

    Article  Google Scholar 

  • Aqrabawi M (1993) Oyster (Bivalvia-Pteriomorphia) of Upper Cretaceous rocks of Jordan. Palaeontology, stratigraphy and comparison with the Upper Cretaceous oyster of Northwest Europe. Mitt Geol-Palaontol Inst Univ Hamburg 75:1–135

    Google Scholar 

  • Arzola RG, Wynn RB, Lastras G, Masson DG, Weaver PP (2008) Sedimentary features and processes in the Nazaré and Setúbal submarine canyons, west Iberian margin. Mar Geol 250(1–2):64–88

    Article  Google Scholar 

  • Ayoub-Hannaa W, Fürsich FT (2011) Revision of Cenomanian-Turonian (Upper Cretaceous) gastropods from Egypt. Zitteliana 115–152

  • Bakhshandeh L, TehraniKh K, Mohtat T, Vaziri SH, Keshani F (2015) Biozonation of the Gurpi Formatin at Banroushan section, SW Ilam, based on Planktonic Foraminifera. Sci Q J Geosci 95:85–96 (In Persian)

    Google Scholar 

  • Balmaki B, Babazadeh S, Vahidinia M, Asgharianrostami M (2010) Introducing of Echinoids of the Gurpi formation, Seimareh Member, Ilam province, Iran. Paper presented at the 1 International Applied Geological Congress.

  • Banerjee S, Bansal U, Pande K, Meena S (2016) Compositional variability of glauconites within the Upper Cretaceous Karai Shale Formation, Cauvery Basin, India: implications for evaluation of stratigraphic condensation. Sed Geol 331:12–29

    Article  Google Scholar 

  • Barrera E, Savin SM (1999) Evolution of late Campanian-Maastrichtian marine climates and oceans. Special Papers, Geological Society of America, pp 245–282

    Google Scholar 

  • Beiranvand B, Ghasemi-Nejad E, Kamali MR (2013) Palynomorphs’ response to sea-level fluctuations: a case study from Late Cretaceous-Paleocene, Gurpi Formation, SW Iran. J Geopersia 3:11–24

    Google Scholar 

  • Bernhardt A, MelnickD J-M, Argandoña B, González J, Strecker MR (2015) Controls on submarine canyon activity during sea-level highstands: the Biobío canyon system offshore Chile. Geosphere 11(4):1226–1255

    Article  Google Scholar 

  • Blanc EP, Allen MB, Inger S, Hassani H (2003) Structural styles in the Zagros simple folded zone Iran. J Geol Soc 160(3):401–412

    Article  Google Scholar 

  • Bromley RG, Asgaard U (1993) Endolithic community replacement on a Pliocene rocky coast. Ichnos 2(2):93–116

    Article  Google Scholar 

  • Brothers DS, Uri S, Andrews BD, Chaytor JD, Twichell DC (2013) Geomorphic process fingerprints in submarine canyons. Mar Geol 337:53–66

    Article  Google Scholar 

  • Burst J (1958) Mineral heterogeneity in “glauconite” pellets. Am Mineral J Earth Planet Mater 43(5–6):481–497

    Google Scholar 

  • Casini G, Gillespie P, Vergés J, Romaire I, Fernández N, Casciello E, Embry J-C (2011) Sub-seismic fractures in foreland fold and thrust belts: insight from the Lurestan Province, Zagros Mountains, and Iran. Pet Geosci 17(3):263–282

    Article  Google Scholar 

  • Catuneanu O (2019) Model-independent sequence stratigraphy. Earth-Sci Rev 188:312–388

    Article  Google Scholar 

  • Catuneanu O, Abreu V, Bhattacharya J, Blum M, Dalrymple R, Eriksson P, Gibling M (2009) Towards the standardization of sequence stratigraphy. Earth Sci Rev 92(1–2):1–33

    Article  Google Scholar 

  • Checa AG, Jiménez-Jiménez AP (2003) Evolutionary morphology of oblique ribs of bivalves. Palaeontology 46(4):709–724

    Article  Google Scholar 

  • Covault JA, Graham SA (2010) Submarine fans at all sea-level stands: tectono-morphologic and climatic controls on terrigenous sediment delivery to the deep sea. Geology 38(10):939–942

    Article  Google Scholar 

  • Covault JA, RomansB W, Fildani A, McGann M, Graham SA (2010) Rapid climatic signal propagation from source to sink in a southern California sediment-routing system. J Geol 118(3):247–259

    Article  Google Scholar 

  • Covault JA, Romans BW, Graham SA, Fildani A, Hilley GE (2011) Terrestrial source to deep-sea sink sediment budgets at high and low sea levels: Insights from tectonically active Southern California. Geology 39(7):619–622

    Article  Google Scholar 

  • Darabi G, Sadeghi A (2017) The Gurpi formation (upper Santonian–upper Maastrichtian, Marun oil field) biostratigraphy and paleoecology investigation. Geopersia 7(2):169–198

    Google Scholar 

  • Darabi G, Moghaddam IM, Sadeghi A, Yusefi B (2017) Biostratigrapy and palaebathymetry of Gurpi formation in Anticlin Sultan. J Res Earth Sci 31:137–152 (In Persian)

    Google Scholar 

  • Darabi G, Moghaddam IM, Sadeghi A, Yusefi B (2018) Planktonic foraminifera and sea-level changes in the upper Cretaceous of the Gurpi Formation, Lorestan basin, SW Iran. J Afr Earth Sc 138:201–218

    Article  Google Scholar 

  • Darvishzadeh A (2009) Geology of Iran: stratigraphy, tectonic, metamorphism, and magmatism. Amir Kabir, Tehran

    Google Scholar 

  • Dhondt AV, Jaillard E (2005) Cretaceous bivalves from Ecuador and northern Peru. J S Am Earth Sci 19(3):325–342

    Article  Google Scholar 

  • Dhondt AV, Malchus N, Boumaza L, Jaillard E (1999) Cretaceous oysters from North Africa; origin and distribution. Bulletin De La Société Géologique De France 170(1):67–76

    Google Scholar 

  • Dill Jafar Nejad AAM (2007) Palenology and palinostratigraphy of Gurpi Formation in Tang-e-Bijar section in the Ilam province. Master thesis, Faculty of Science, Shahid Beheshti University, p 144

  • Dorschel B, Wheeler AJ, Huvenne V, de Haas H (2009) Cold-water coral mounds in an erosive environmental setting: TOBI side-scan sonar data and ROV video footage from the northwest Porcupine Bank NE Atlantic. Mar Geol 264(3–4):218–229

    Article  Google Scholar 

  • El-Ayyat AM, Kassab AS (2004) Biostratinomy and facies analysis of the upper Cretaceous oyster storm shell beds of the Duwi formation, Qusseir District, Red Sea Region Egypt. J Afr Earth Sci 39(3–5):421–428

    Article  Google Scholar 

  • El-Sabbagh AM, El Hedeny MM (2016) A shell concentration of the middle Miocene Crassostrea gryphoides (Schlotheim, 1813) from Siwa oasis, Western Desert Egypt. J Afr Earth Sci 120:1–11

    Article  Google Scholar 

  • El-Sabbagh A, Mansour H, El-Hedeny M (2015) Taphonomy and paleoecology of Cenomanian oysters from the Musabaa Salama area, southwestern Sinai Egypt. Geosci J 19(4):655–679

    Article  Google Scholar 

  • Esmaeilbeig MR (2018) Biostratigraphy of the Gurpi Formation (Santonian–Maastrictian) by using Globotruncanidae, Zagros Mountains Iran. Carbonates Evaporites 33(1):133–142

    Article  Google Scholar 

  • Evangelinos D, Nelson CH, Escutia C, De Batist M, Khlystov O (2017) Late Quaternary climatic control of Lake Baikal (Russia) turbidite systems: Implications for turbidite systems worldwide. Geology 45(2):179–182

    Article  Google Scholar 

  • Farzipour-Saein A, Yassaghi A, Sherkati S, Koyi H (2009) Basin evolution of the Lurestan region in the Zagros fold-and-thrust belt Iran. J Petrol Geol 32(1):5–19

    Article  Google Scholar 

  • Flügel E (2013) Microfacies of carbonate rocks: analysis, interpretation and application. Springer Science & Business Media

    Google Scholar 

  • Friedrich O, Norris RD, Erbacher J (2012) Evolution of middle to Late Cretaceous oceans—a 55 my record of Earth’s temperature and carbon cycle. Geology 40(2):107–110

    Article  Google Scholar 

  • Gamberi F, Rovere M, Marani MP, Dykstra M (2015) Modern submarine canyon feeder-system and deep-sea fan growth in a tectonically active margin (northern Sicily). Geosphere 11(2):307–319

    Article  Google Scholar 

  • Geel T (2000) Recognition of stratigraphic sequences in carbonate platform and slope deposits: empirical models based on microfacies analysis of Palaeogene deposits in southeastern Spain. Palaeogeogr Palaeoclimatol Palaeoecol 155(3–4):211–238

    Article  Google Scholar 

  • Ghasemi-Nejad E, Hobbi MH, Schiøler P (2006) Dinoflagellate and foraminiferal biostratigraphy of the Gurpi Formation (upper Santonian–upper Maastrichtian), Zagros Mountains Iran. Cretac Res 27(6):828–835

    Article  Google Scholar 

  • Gontharet S, Pierre C, Blanc-Valleron M-M, Rouchy J-M, Fouquet Y, Bayon G, Party TNS (2007) Nature and origin of diagenetic carbonate crusts and concretions from mud volcanoes and pockmarks of the Nile deep-sea fan (eastern Mediterranean Sea). Deep Sea Res Part II: Top Stud Oceanogr 54(11–13):1292–1311

    Article  Google Scholar 

  • Hadavi F, Rasa-Ezadi MM (2008) Nannostratigraphy of Gurpi Formation in Dare-Shahr section (SW Ilam). J Appl Geol 4:299–308

    Google Scholar 

  • Hadavi F, Senemari S (2010) Calcareous nannofossils from the Gurpi Formation (Lower Santonian-Maastrichtian), faulted Zagros range, western Shiraz. Iran Stratigraphy and Geological Correlation 18(2):166–178

    Article  Google Scholar 

  • Hadavi F, Shokri, N (2010) Nanostratigraphy of the Gurpi Formation in Southern Ilam (Cover Section). Sedimentary Facies journal No. 2

  • Haq BU, Hardenbol J, Vail PR (1988) Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change

  • Hashmie A, Rashwan M, El Hedeny M, Sharyari S, Rahimi S, Mansour H (2020) Facies development, palaeoecology, and palaeoenvironment of the Seymareh (Lopha Limestone) Member of the Gurpi Formation (Upper Campanian), Lurestan Province SW Iran. Geol J 55:1–14

    Article  Google Scholar 

  • Hemmati-Nasab M, Ghasemi-Nejad E, Darvishzad B (2008) Paleobathymetry of the Gurpi Formation based on benthic and planktonic foraminifera in Southwestern Iran. J Sci Islam Rep Iran 34:157–173

    Google Scholar 

  • Hessami K, Koyi HA, Talbot CJ, Tabasi H, Shabanian E (2001) Progressive unconformities within an evolving foreland fold–thrust belt, Zagros Mountains. J Geol Soc 158(6):969–981

    Article  Google Scholar 

  • Homke S, Vergés J, Serra-Kiel J, Bernaola G, Sharp I, Garcés M, Goodarzi MH (2009) Late Cretaceous-Paleocene formation of the proto–Zagros foreland basin, Lurestan Province, SW Iran. Geol Soc Am Bull 121(7–8):963–978

    Article  Google Scholar 

  • Hower WF, Brown W (1961) Large-scale laboratory investigation of sand consolidation techniques. J Petrol Technol 13(12):1221–1229

    Article  Google Scholar 

  • Hu X, Wagreich M, Yilmaz IO (2012) Marine rapid environmental/climatic change in the Cretaceous greenhouse world. Cretac Res 38:1–6

    Article  Google Scholar 

  • Jassim SZ, Goff JC (2006) Geology of Iraq, DOLIN, sro, distributed by Geological Society of London

  • Karim KH, Surdashy AM (2005) Tectonic and depositional history of Upper Cretaceous Tanjero Formation in Sulaimaniya area NE-Iraq. J Sulaimaniya Univ (JZS) 8:1–20

    Google Scholar 

  • Koch MC, Friedrich O (2012) Campanian‐Maastrichtian intermediate‐to deep‐water changes in the high latitudes: benthic foraminiferal evidence. Paleoceanography 27(2)

  • Lebreiro S, Voelker A, Vizcaino A, Abrantes F, Alt-Epping U, Jung S, Gràcia E (2009) Sediment instability on the Portuguese continental margin under abrupt glacial climate changes (last 60 kyr). Quatern Sci Rev 28(27–28):3211–3223

    Article  Google Scholar 

  • Mahanipour A, Najafpour A (2016) Calcareous nannofossil assemblages of the Late Campanian-Early Maastrichtian form Gurpi Formation (Dezful embayment, SW Iran): Evidence of a climate cooling event. Geopersia 6(1):129–148

    Google Scholar 

  • Malchus N (1996) Palaeobiogeography of Cretaceous oysters (Bivalvia) in the western Tethys. Mitteilungen Aus Dem Geologisch-Paläontologischen Institut Der Universität Hamburg 77:165–181

    Google Scholar 

  • Malchus N (1998) Aptian (Lower Cretaceous) rudist bivalves from NE Spain: taxonomic problems and preliminary results. Geobios 31:181–191

    Article  Google Scholar 

  • Mauffrey M-A, Urgeles R, Berné S, Canning J (2017) Development of submarine canyons after the Mid-Pleistocene transition on the Ebro margin, NW Mediterranean: the role of fluvial connections. Quat Sci Rev 158:77–93

    Article  Google Scholar 

  • Mekawy M (2013) Taphonomy of Aptian–Albian Beds in the Gebel Mistan, Maghara Area, Northern Sinai Egypt. J Earth Sci Clim Change 4(2):5

    Article  Google Scholar 

  • Moradi M (2010) Biostratigraphy and paleoecology of Gurpi Formation in Farhad Abad section in the west of Darreh-shahr. Master thesis, Faculty of Science, Tehran University, p 130

  • Motiei H (1993) Stratigraphy of Zagros. Treatise Geol Iran 60:151

    Google Scholar 

  • Nairn A, Alsharhan A (1997) Sedimentary basins and petroleum geology of the Middle East. Elsevier

    Google Scholar 

  • Najafpour A, Mahanipour A, Dastanpour M (2015) Calcareous nannofossil biostratigraphy of Late Campanian–Early Maastrichtian sediments in southwest Iran. Arab J Geosci 8(8):6037–6046

    Article  Google Scholar 

  • Odin GS, Matter A (1981) De glauconiarum origine. Sedimentology 28(5):611–641

    Article  Google Scholar 

  • Okan Y, Hoşgör I (2010) The coleoid cephalopod from the early Miocene of Eastern Mediterranean (Diyarbakır, Turkey).

  • Palanques A, Puig P, Latasa M, Scharek R (2009) Deep sediment transport induced by storms and dense shelf-water cascading in the northwestern Mediterranean basin. Deep Sea Res Part I 56(3):425–434

    Article  Google Scholar 

  • Pingree R, Le Cann B (1990) Structure, strength and seasonality of the slope currents in the Bay of Biscay region. J Mar Biol Assoc UK 70(4):857–885

    Article  Google Scholar 

  • Podobina VM, Kseneva TG (2005) Upper Cretaceous zonal stratigraphy of the West Siberian Plain based on foraminifera. Cretac Res 26(1):133–143

    Article  Google Scholar 

  • Pufahl PK, James NP (2006) Monospecific Pliocene oyster buildups, Murray Basin, South Australia: brackish water end member of the reef spectrum. Palaeogeogr Palaeoclimatol Palaeoecol 233(1–2):11–33

    Article  Google Scholar 

  • Pufahl PK, Grimm KA, Abed AM, Sadaqah RM (2003) Upper Cretaceous (Campanian) phosphorites in Jordan: implications for the formation of a south Tethyan phosphorite giant. Sed Geol 161(3–4):175–205

    Article  Google Scholar 

  • Puig P, Palanques A, Martín J (2014) Contemporary sediment-transport processes in submarine canyons. Ann Rev Mar Sci 6:53–77

    Article  Google Scholar 

  • Rabani R, Ghasemi-Nejad A, Amini A (2009) Palinostra - tigraphy and sequence stratigraphy of Gurpi Formation in valley Shahr section southeastern of Ilam. Iran J Geol 10:3–13

    Google Scholar 

  • Rahimi S, Ashouri AR, Sadeghi A, Ghaderi A (2017) Biostratigraphy of the Gurpi Formation based on planktonic foraminifera with emphasis on the Cretaceous-Paleogene boundary in Jahangirabad section, Kabirkuh Anticline, SW Iran. Iran J Petrol Geol 14:93–110 (In Persian)

    Google Scholar 

  • Rahimi S, Ashouri AR, Sadeghi A, Ghaderi A (2018) Biostratigraphy of the Gurpi Formation based on planktonic foraminifera with emphasis on the Cretaceous–Paleogene boundary in Gandab section, with correlation of type section, Kabirkuh Anticline SW Iran. Stratigr Sedimentol J 34:37–52 (In Persian)

    Google Scholar 

  • Rahimi S, Ashouri AR, Sadeghi A, Ghaderi A (2020) Biostratigraphy of Campanian—Maastrichtian sequences and facies analysis in Anaran and Samand Anticlines Zagros Iran. Arab J Geosci 13:643

    Article  Google Scholar 

  • Razmjooei MJ, Thibault N, Kani A, Mahanipour A, Boussaha M, Korte C (2014) Coniacian-Maastrichtian calcareous nannofossil biostratigraphy and carbon-isotope stratigraphy in the Zagros Basin (Iran): consequences for the correlation of Late Cretaceous Stage Boundaries between the Tethyan and Boreal realms. Newsl Stratigr 47(2):183–209

    Article  Google Scholar 

  • Razmjooei MJ, Thibault N, Kani A, Dinares-Turell J, Puceat E, Shahriari S, Voigt S (2018) Integrated bio-and carbon-isotope stratigraphy of the Upper Cretaceous Gurpi Formation (Iran): a new reference for the eastern Tethys and its implications for large-scale correlation of stage boundaries. Cretac Res 91:312–340

    Article  Google Scholar 

  • Romans BW, Castelltort S, Covault JA, Fildani A, Walsh J (2016) Environmental signal propagation in sedimentary systems across timescales. Earth Sci Rev 153:7–29

    Article  Google Scholar 

  • Seilacher A (1984) Sedimentary structures tentatively attributed to seismic events. Mar Geol 55(1–2):1–12

    Article  Google Scholar 

  • Senemari S, Usefi MSM (2013) Evaluation of Cretaceous–Paleogene boundary based on calcareous nannofossils in section of Pol Dokhtar, Lorestan, southwestern Iran. Arab J Geosci 6(10):3615–3621

    Article  Google Scholar 

  • Sharyari S, Kani A, Amiri-Bakhtiyar H (2017) Biostratigraphy, Gurpi formation in Samand anticline (Lurestan Zone), based calcareous nannofossil. Stratigr Sedimentol J 33:37–60 (In Persian)

    Google Scholar 

  • Sharyari S, Kani A, Amiri-Bakhtiyar H, Jamali AM (2018) Biostratigraphy, Gurpi formation in Anaran anticline (Lurestan Zone), based calcareous nannofossil. Res Sci Geol J 35:139–161 (In Persian)

    Google Scholar 

  • Sherkati S, Molinaro M, de Lamotte DF, Letouzey J (2005) Detachment folding in the Central and Eastern Zagros fold-belt (Iran): salt mobility, multiple detachments and late basement control. J Struct Geol 27(9):1680–1696

    Article  Google Scholar 

  • Sina MA, Aghanabati A, Kani AL, Bahadori AR (2010) Biostratigraphy study of Gurpi Formation in Poldokhtar section (Kuh-Soltan anticline) based on calcareous nannofossils. J Earth Sci 79:183–188

    Google Scholar 

  • Stanley SM (1970) Relation of shell form to life habits of the Bivalvia (Mollusca), vol 125. Geological Society of America

    Google Scholar 

  • Stenzel HB (1971) Oysters. Treatise on invertebrate paleontology, Part N, Bivalvia 3, N953-N1224

  • Stevenson CJ, Jackson CA-L, Hodgson DM, Hubbard SM, Eggenhuisen JT (2015) Deep-water sediment bypass. J Sediment Res 85(9):1058–1081

    Article  Google Scholar 

  • Sweet ML, Blum MD (2016) Connections between fluvial to shallow marine environments and submarine canyons: implications for sediment transfer to deep water. J Sediment Res 86(10):1147–1162

    Article  Google Scholar 

  • Talling PJ (2014) On the triggers, resulting flow types and frequencies of subaqueous sediment density flows in different settings. Mar Geol 352:155–182

    Article  Google Scholar 

  • Talling PJ, Paull CK, Piper DJ (2013) How are subaqueous sediment density flows triggered, what is their internal structure and how does it evolve? Direct observations from monitoring of active flows. Earth Sci Rev 125:244–287

    Article  Google Scholar 

  • Talling PJ, Allin J, Armitage DA, Arnott RW, Cartigny MJ, Clare MA, Hansen E (2015) Key future directions for research on turbidity currents and their deposits. J Sediment Res 85(2):153–169

    Article  Google Scholar 

  • Van Rooij D, De Mol L, Le Guilloux E, Wisshak M, Huvenne V, Moeremans R, Henriet J-P (2010) Environmental setting of deep-water oysters in the Bay of Biscay. Deep Sea Res Part I 57(12):1561–1572

    Article  Google Scholar 

  • Wagner A, Benndorf J (2007) Climate-driven warming during spring destabilises a Daphnia population: a mechanistic food web approach. Oecologia 151(2):351–364

    Article  Google Scholar 

  • Williams TA, Graham SA (2013) Controls on forearc basin architecture from seismic and sequence stratigraphy of the Upper Cretaceous Great Valley Group, central Sacramento Basin California. Int Geol Rev 55(16):2030–2059

    Article  Google Scholar 

  • Wilson BM (2007) Igneous petrogenesis a global tectonic approach. Springer Science & Business Media

    Google Scholar 

  • Xu J, Sequeiros OE, Noble MA (2014) Sediment concentrations, flow conditions, and downstream evolution of two turbidity currents, Monterey Canyon, USA. Deep Sea Res Part I 89:11–34

    Article  Google Scholar 

  • Zakhera M, El-Hedeny M, El-Sabbagh A, Al Farraj S (2017) Callovian–Oxfordian bivalves from central Saudi Arabia: systematic palaeontology and paleobiogeography. J Afr Earth Sc 130:60–75

    Article  Google Scholar 

  • Zarei E, Ghasemi-Nejad E (2014) Sedimentary and organic facies investigation of the Gurpi Formation (Campanian–Paleocene) in southwest of Zagros Iran. Arab J Geosci 7(10):4265–4278

    Article  Google Scholar 

  • Ziegler MA (2001) Late Permian to Holocene paleofacies evolution of the Arabian Plate and its hydrocarbon occurrences. GeoArabia 6(3):445–504

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully appreciate the laboratory support supplied by the Department of Geology, Shahid Beheshti University, Shiraz University and Ferdowsi Mashhad University. We thank are Dr Ali hashmie and Saeid Afsarifard for insightful comments on earlier and final drafts of this manuscript and especially during field and laboratory work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afshin Hashmie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashmie, A., Ghotbi, N., Sharyari, S. et al. Expansion and sea-level change of paleocanyon Seymareh Member (Lopha limestone), Zagros, and Iran. Carbonates Evaporites 36, 74 (2021). https://doi.org/10.1007/s13146-021-00724-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13146-021-00724-7

Keywords

Navigation