Skip to main content
Log in

Sedimentary Structure and Sequence Stratigraphy of the Upper Paleocene-lower Eocene (Ayaycha Formation) from the Eastern Gafsa Basin, Southern Tunisia

  • Published:
Lithology and Mineral Resources Aims and scope Submit manuscript

Abstract

Detailed sedimentological and sequence stratigraphic analysis of the upper Paleocene–lower Eocene shallow-marine limestones exposed in the Eastern Gafsa basin in southern Tunisia provides a new insight into the sedimentary response to climate and sea-level changes revealed in the southern Tethysian margin. The 81 m thick Ayaycha Formation is composed of three units. The lower unit is built up of channelized fossiliferous limestones superposed by the sequence of alternated thin–to medium-bedded limestone and marls. The second unit is dominated by marls, and the third unit is formed by channelized limestones lying within bioclastic limestones. Based on their lithological features and strata geometries, the Ayaycha Formation exhibits seven facies evolving from offshore to intertidal environments. Clay paragenesis shows that the lower unit was accumulated under the warm and seasonally contrasting climate, or probably, repeated change of dry and humid seasons. The lower unit corresponds to the upper Paleocene deposits. The upper Paleocene-lower Eocene, middle and upper units were accumulated under warm climate and cover the time interval of global paleoecological crisis known as the Paleocene–Eocene Thermal Maximum (PETM). The consequence of this global warming was the sea level rise, which correspond to the transgressive pulse occurred prior to the Paleocene–Eocene boundary. Integrated sequence stratigraphic analysis showed that the Ayaycha Fm is formed by the stacking of thirteen third-order depositional sequences. Each depositional sequence results from a transgressive-regressive cycle in shallow marine environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Ben Haj Ali, M., Kadri, A., Zagrarni, M.F, and Gaied, M.E., Les unités lithostratigraphiques de l’Eocène en Tunisie: Evolution latérale et actualisation de la nomenclature, Notes du Service Géologique de Tunisie, 2002, no. 69, pp. 53‒73.

  2. Bishop, W.F., Geology of Tunisia and adjacent parts of Algeria and Libya, Am. Ass.Petrol. Geol. Bull., 1975, no. 59, pp. 413‒450.

  3. Burollet, P.F., Contribution à l’etude stratigraphique de la Tunisie centrale, Ph.D Thesis, Paris, Ann. Mines Geol., Tunis., 1956.

  4. Carroll, D., Clay minerals in Arctic Ocean sea-floor sediments. J. Sedimen. Petrol., 1970, no. 40, pp. 814‒821.

  5. Castany, G., Etude géologique de l’Atlas tunisien oriental, Ann. Min. Géol., Paris, 1951.

    Google Scholar 

  6. Chamley, H., Deconinck, J.F., and Millot, G., Sur l’abondance des minéraux smectitiques dans les sédiments marins communs, déposés lors des périodes de haut niveau marin du Jurassique supérieur au Paléogène, Comptes Rendus Acad. SciParis, 1999, Ser. II 311, pp. 1529–1536.

  7. Collinson, J.D., and Thompson, D.B., Sedimentary Structures, Unwin Hyman, 1989.

    Google Scholar 

  8. El Ayachi, M.S., Zagrarni, M. F., Snoussi, A., Bahrouni, N., Gzam, M., Ben Assi, I., Hammami, K., Abdelli, H., and Ben Rhaiem, H., The Paleocene-Lower Eocene series of the Gafsa basin (South-Central Tunisia): integrated stratigraphy and paleoenvironments, Arab. J. Geosci., 2016, no. 9. https://doi.org/10.1007/s12517-016-2403-0

  9. El-Ayyat, A.M., Sedimentology, sequential analysis and clay mineralogy of the Lower Eocene sequence at Farafra Oasis, Western Desert of Egypt, J. Afr. Earth Sci., 2013, no. 78, pp. 28‒50.

  10. Flügel, E., Microfacies of Carbonate Rocks: Analysis, Interpretation and Application, Berlin: Springer, 2004.

    Book  Google Scholar 

  11. Fournie, D., Nomenclature litho stratigraphique des séries du crétacé supérieur au tertiaire de Tunisie, Bull. Cent. Rech. Proс. Elf Aquitaine 2, 1978, no. 1, pp. 97‒148.

  12. Galfati, I., Sassi, A.B., Zaier, A., Bouchardon, J.L., Bilal, E., Joron, J.L., and Sassi, S., Geochemistry and mineralogy of Paleocene-Eocene Oum El Khechebphosphorites (Gafsa-Metlaoui Basin) Tunisia, Geochem. J., 2010, no. 44, pp. 189‒210.

  13. Garnit, H., and Bouhlel, S., Petrography, mineralogy and geochemistry of the Late Eocene oolitic ironstones of the Jebel Ank, Southern Tunisian Atlas, Ore Geo. Rev., 2017, no. 84. https://doi.org/10.1016/j.oregeorev.2016.12.026

  14. Garnit, H., Bouhlel, S., Barca, D., and Chtara, C., Application of LA-ICP-MS to sedimentary phosphatic particles from Tunisian phosphorite deposits: insights from trace elements and REE into paleo-depositional environments, Chem. Erde, 2012, 72, pp. 127–139.

    Article  Google Scholar 

  15. Golonka, J., and Kiessling, W., Phanerozoic time scale and definition of time slices, inPhanerozoic Reef Patterns, Kiessling, W., Flügel, E., and Golonka, J., Eds., Soc. Econ. Paleontol. Mineral., Sp. Publ, 2002, vol. 72, pp. 11‒20.

  16. Grelaud, C., Razin, P., and Homewood, P., Channelized systems in an inner carbonate platform setting: differentiation between incisions and tidal channels (Natih Formation, Late Cretaceous, Oman), Geol. Soc. London Spec. Publ., 2015, 329, pp. 163–186. https://doi.org/10.1144/SP329.8

    Article  Google Scholar 

  17. Haq, B.U., Hardenbol, J., and Vail, P.R., Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change, in Sea-level Changes: an Integrated Approach, Wilgus, C.K., Hastings, B.S., , Eds., Soc. Econ. Paleont. Mineral. Spec. Publ., 1988, vol. 42, pp. 71‒108.

    Google Scholar 

  18. Henchiri, M., Sedimentation, depositional environment and diagenesis of Eocene biosiliceous deposits in Gafsa Basin, southern Tunisia, J. Afr. Earth Sci., 2007, 49, pp. 187‒200.

    Article  Google Scholar 

  19. Henchiri, M., and Slim-S’himi, N., Silicification of sulfate evaporites and their carbonate replacements in Eocene marine sedimentary rocks, Tunisia: two diagenetic trends, Sedimentology, 2006, no. 53, pp. 1135‒1159.

  20. Jamoussi, F., Bedir, M., Boukadi, N., Kharbachi, S., Zargouni, F., Lopez-Galindo; A., and Paquet, H., Clay mineralogical distribution and tectono-eustatic control in the Tunisian margin basins, Comptes Geosci., 2003, no. 335, pp. 175‒183.

  21. Kocsis, L., Ounis, A., Baumgartner, C., Pirkenseer, C., Harding, I., Adatte, T., Chaabani, F., and Salah, M.N., Paleocene-Eocene palaeoenvironmental conditions of the main phosphorite deposits (Chouabine Formation) in the Gafsa Basin, Tunisia, J. Afr. EarthSci., 2014, no. 100, pp. 586‒597.

  22. Loucks, R.G., Moody, R.T.J., Bellis, J.K., and Brown, A.A., Regional depositional setting and pore network systems of the El Garia Formation (Metlaoui Group, Lower Eocene), offshore Tunisia, in Petroleum Geology of North Africa, Macgregor, D.S., Moody, R.T.J., and Clark-Lowes, D.D., Eds., Geol. Soc. Lond. Spec. Publ., 1998, no. 132, pp. 355‒374.

  23. Messadi, A. M., New filamentous bivalve rich event beds in the Eocene deposits from Gafsa Basin: sedimentology, sequential analysis and environmental significance in Tethyan platform, Carbonates and Evaporites, 2021, vol. 36, no. 7. https://doi.org/10.1007/s13146-020-00668-4

  24. Messadi, A. M., Mardassi, B., Ouali, J., and Touir, J., Sedimentology, diagenesis, clay mineralogy and sequential analysis model (Evaporitic-carbonates transition ramp deposits of Upper Paleocene at Tamerza area (Gafsa Basin: Southern Tunisia), J. Afr. Earth Sci., 2016, no. 118, pp. 205‒230.

  25. Messadi, A. M., Mardassi, B., Ouali, J., and Touir, J., Sequential analysis applied on Evaporite series: Example of the Upper Paleocene (Gafsa Basin), in 1st Atlas Georesour. Int. Congr., 2017. https://doi.org/10.13140/RG.2.2.11070.89929

  26. Messadi, A. M., Mardassi, B., Ouali, J., and Touir, J., Sedimentology, diagenesis, and sequential analysis of a carbonate series in shallow marine environments of the Middle Eocene deposits from Gafsa basin (Southern Tunisia), in 1st Atlas Georesour. Int. Cong., 2017. https://doi.org/10.13140/RG.2.2.18874.18883

  27. Messadi, A. M., Mardassi, B., Ouali, J., and Touir, J., Contribution of the associate minerals paragenesis in the detection of confinement conditions and climate implication: case study of the Late Paleocene-Thelja Formation (Gafsa Basin), in 1st Atlas Georesour. Int. Congr., 2017. https://doi.org/10.13140/RG.2.2.13460.91525

  28. Messadi, A. M., Mardassi, B., Ouali, J., and Touir, J., Different types of shallowing up cycles in evaporite series of the Late Paleocene from the Gafsa basin: causes and geodynamic signification. Hammamet-Tunisia, 1st Atlas Georesour. Int. Congr., 2017. https://doi.org/10.13140/RG.2.2.18874.18883

  29. Messadi, A. M., Mardassi, B., Ouali, J., and Touir, J., Diagenetic process as tool to diagnose paleo-environment conditions, bathymetry and oxygenation during Late Paleocene-Early Eocene in the Gafsa basin, Carbonats and Evaporites, 2018.

    Google Scholar 

  30. Messadi, A. M., Mardassi, B., Ouali, J., and Touir, J., Sedimentology, sequential analysis and paleoclimate associations of the upper Paleocene-lower Eocene Chouabine Formation at the Oued Thelja section, Gafsa Basin, Southern Tunisia, Stratigr J. 2019, pp. 205–239.

    Book  Google Scholar 

  31. Messadi, A. M., Mardassi, B., Ouali, J., and Touir, J., Phosphate genesis and concentration a response to sea level fluctuation in shallow marine environments of the lower Eocene deposits in the southern Tethyan margin: case study of the Gafsa Basin, southern Tunisia, Carbonates and Evaporites, 2019.

  32. Messadi, A. M., Touir, J., Mardassi, B., and Ouali, J., Factors controlling sedimentation and sequence stratigraphy evolution in shallow marine (carbonates) platform: example of Middle Eocene deposits from Gafsa Basin, Carbonates. Evaporites, 2020, vol. 35, no. 58.

  33. Miall, A.D., Principles of Sedimentary Basin Analysis, New York : Springer, 1998.

    Google Scholar 

  34. Millot, G., Géologies des Argiles. Masson and Cie. Paris, 1964.

    Google Scholar 

  35. Pierce, J. W., and Siegel, F.R., Quantification in clay mineral studies of sediments and sedimentary rocks. J. Sediment. Petrol., 1969, no. 39, pp. 187‒193.

  36. Plummer, P.S. and Gostin, V.A., Shrinkage cracks: Desiccation or synaeresis?, J Sediment. Research. 1981, vol. 51, no. 4, pp. 1147–1156.

    Google Scholar 

  37. Purser, B.H., Sédimentation et diagenèse des carbonates néritiques récents, I. Éd. Technip. 1980.

    Google Scholar 

  38. Rigane, A., Gourmelen, C., Broquet, P., and Truillet, R., Originalité des phénomènes tectoniques synsédimentaires fini-yprésiens en Tunisie centro-septentrionale (région de Kairouan), Bull. Soc. Géol. France, 1994, vol. 156, pp. 27‒35.

    Google Scholar 

  39. Robert, C., and Chamley, H., Development of early Eocene warm climates, as inferred from clay mineral variations in oceanic sediments, Global Planet.Change, 1991, no. 89, pp. 315‒332.

  40. Robert, C., and Kennett, J., Paleocene and Eocene kaolinite distribution in the South Atlantic and Southern Ocean: Antarctic climatic and paleoceanographic implications, Mar. Geol., 1992, no. 103, pp. 99–110.

  41. Robert, C., and Kennett, J.P., Antarctic subtropical humid episode at the Paleocene– Eocene boundary: clay–mineral evidence, Geology, 1994, np. 22, pp. 211–214.

  42. Shinn, E.A., Submarine lithification of Holocene carbonate sediments in the Persian Gulf, Sedimentology, 1969, vol. 12, pp. 109‒144.

    Article  Google Scholar 

  43. Strasser, A., Pittet, B., Hillgärtner, H., and Pasquier, J.B., Depositional sequences in shallow carbonate dominated sedimentary systems: concepts for a high resolution analysis, Sediment. Geol., 1999, no. 128, pp. 201‒221.

  44. Thiry, M., Palaeoclimatic interpretation of clay minerals in marine deposits: an outlook from the continental origin, Earth-Sci. Rev., 2000, vol. 49, pp. 201‒221.

    Article  Google Scholar 

  45. Tucker, M.E., and Bathurst, R.G.C., Carbonate Diagenesis, Blackwell Sci. Publ., 1990.

    Book  Google Scholar 

  46. Vail, P.R., Mitchum, R.M, Todd, R.G., Widmier, J.M., Thompson, S., Sangree, J.B., Bubb, J.N., and Hatlelid, W.G., in Seismic Stratigraphy and Global Changes of Sea Level (Seismic Stratigraphy-applications to Hydrocarbon Exploration), Am. Ass. Petrol. Geol. Memoir, 1977, vol. 26, pp. 49‒212.

  47. Zaier, A., Beji-Sassi, A., Sassi, S., and Moody, R.T.J., Basin evolution and deposition during the Early Paleogene in Tunisia, in Petroleum Geology of North Africa, Maggregor, D.S., Moody, R.T.J., and Clark-Lowes, D.D., Eds. Geol. Soc. London Spec. Publ., 1998, no. 123, pp. 375‒393.

  48. Zargouni, F., Laatar, S., Chaouchi, A., and Regaya, K., Carte géologique de la région de Metlaoui. Service géoologique, 1985.

Download references

ACKNOWLEDGMENTS

The authors would like to thank the workers of the Civil Engineering department at the National Engineering School of Sfax (ENIS), the Physics Department of the Faculty of Science of Bizerte and the Higher Institute of Biotechnology of Sfax for their technical support. The thankful to Ms. Ahmed Ben Rguiga, English professor at the FSEG (Faculty of Economics and Management of Sfax), for patiently proof-reading version of this manuscript. We are also grateful to the anonymous journal reviewers for their constructive comments, which helped to improve this paper. The authors extend their thanks to the editor, who greatly improved and clarified the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdel Majid Messadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Messadi, A.M. Sedimentary Structure and Sequence Stratigraphy of the Upper Paleocene-lower Eocene (Ayaycha Formation) from the Eastern Gafsa Basin, Southern Tunisia. Lithol Miner Resour 57, 568–583 (2022). https://doi.org/10.1134/S0024490222060049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0024490222060049

Keywords:

Navigation