Skip to main content
Log in

Climate-driven warming during spring destabilises a Daphnia population: a mechanistic food web approach

  • Global change and conservation ecology
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Temperature-driven changes in interactions between populations are crucial to the estimation of the impact of global warming on aquatic food webs. We analysed inter-annual variability in two data sets from Bautzen reservoir, Germany. In a long-term data set (1981–1999) we examined the pelagic phenology of Daphnia galeata, a keystone species, the invertebrate predator Leptodora kindtii, phytoplankton and Secchi depth in relation to water temperature and the North Atlantic Oscillation index. In a short-term data set (1995–1998) we examined food web relations, particularly the consumption of D. galeata by young-of-the-year (YOY) percids and L. kindtii and rates of population change of D. galeata (abundance, recruitment pattern and non-consumptive mortality). The start of the clear-water stage (CWS) was correlated with winter temperatures. It started 5.8 days earlier per degree warming after warm winters (mean January–March temperature ≥2.5°C) compared to cold winters (mean temperature <2.5°C). However, the end of the CWS remained relatively constant. Predation by L. kindtii and YOY percids on D. galeata started distinctly earlier, i.e. by 13.0 and 6.5 days per degree warming, respectively, in years when the average May temperature was high (≥14°C) compared to years when it was low (<14°C). Significant reductions of Daphnia abundance in midsummer occurred only in years in which the mean May temperature exceeded 14°C. This temperature regime resulted in a match of over-exploitation of food resources by Daphnia during the CWS and strong predation by YOY percids and L. kindtii. Consumptive mortality increased at higher rates with a rise in temperature than net recruitment, resulting in lower Daphnia densities at the end of the CWS. Our data suggest that even low warming by 1.7°C during a short, but critical seasonal period, resulting in the coincidence of two or more factors adversely affecting a keystone species, such as Daphnia, may induce changes in whole lake food webs and thus alter entire ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3a, b
Fig. 4a, b, c
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adrian R, Deneke R, Mischke U, Stellmacher R, Lederer P (1995) A long-term study of the Heiligensee (1975–1992): evidence for effects of climatic change on the dynamics of eutrophied lake ecosystems. Arch Hydrobiol 133:315-337

    Google Scholar 

  • Beisner BE, McCauley E, Wrona FJ (1997) The influence of temperature and food chain length on plankton predator-prey dynamics. Can J Fish Aquat Sci 54:586–595

    Article  Google Scholar 

  • Benndorf J, Schultz H (2000) Talsperre Bautzen: Langzeit-Biomanipulation bei sehr hoher Nährstoffbelastung. In: Willmitzer H (ed) Fischerei und fischereiliches Management an Trinkwassertalsperren. ATT Tech Inf 11:73–79

  • Benndorf J, Kranich J, Mehner T, Wagner A (2001) Temperature impact on the midsummer decline of Daphnia galeata a long-term data analysis from the biomanipulated Bautzen reservoir (Germany). Freshwater Biol 46:199–212

    Article  Google Scholar 

  • Boersma M, van Tongeren OFR, Mooij WM (1996) Seasonal patterns in the mortality of Daphnia species in a shallow lake. Can J Fish Aquat Sci 53:18–28

    Article  Google Scholar 

  • Böing WJ, Wagner A, Voigt H, Deppe T, Benndorf J (1998) Phytoplankton responses to grazing by Daphnia galeata in the biomanipulated Bautzen reservoir. Hydrobiologia 389:101–114

    Article  Google Scholar 

  • Delos Reyes MR, Arzbach HH, Braum E (1992) In situ development of perch eggs Perca fluviatilis L. (Pisces Percidae) in a small eutrophic lake Lake Plusssee Holstein Germany. Int Rev Ges Hydrobiol 77:467–481

    Article  Google Scholar 

  • DeStasio BT, Hill DK, Kleinhans JM, Nibbelink NP, Magnuson JJ (1996) Potential effects of global climate change on small north-temperate lakes: physics, fish and plankton. Limnol Oceanogr 41:1136–1149

    Article  Google Scholar 

  • Dörner H, Wagner A, Benndorf J (1999) Predation by piscivorous fish on age-0 fish: spatial and temporal variability in a biomanipulated lake (Bautzen reservoir, Germany). Hydrobiologia 408/409:39–46

    Article  Google Scholar 

  • Eckmann R, Gaedke U, Wetzlar HJ (1988) Effects of climatic and density-dependent factors on year-class strength of Coregonus lavaretus L. in Lake Constance. Can J Fish Aquat Sci 45:1088–1093

    Google Scholar 

  • Edwards M, Richardson AJ (2004) Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430:881–884

    Article  PubMed  CAS  Google Scholar 

  • Emmerson M, Bezemer M, Hunter MD, Jones TH (2005) Global change alters the stability of food webs. Glob Change Biol 11:490–501

    Article  Google Scholar 

  • George DG, Hewitt DP (1999) The influence of year-to-year variations in winter weather on the dynamics of Daphnia and Eudiaptomus in Esthwaite Water, Cumbria. Funct Ecol 13:45–54

    Article  Google Scholar 

  • George DG, Hewitt DP (2006) The impact of year-to-year changes in the weather on the dynamics of Daphnia in a thermally stratified lake. Aquat Ecol 40:33–47

    Article  CAS  Google Scholar 

  • George DG, Hewitt DP, Lund JWG, Smyly WJP (1990) The relative effects of enrichment and climate change on the long-term dynamics of Daphnia in Esthwaite Water, Cumbria. Freshwater Biol 23:55–70

    Article  Google Scholar 

  • George DG, Talling JF, Rigg E (2000) Factors influencing the temporal coherence of five lakes in the English Lake District. Freshwater Biol 43:449–461

    Article  Google Scholar 

  • Gerten D, Adrian R (2001) Differences in the persistency of the North Atlantic Oscillation signal among lakes. Limnol Oceanogr 46:448–455

    Article  Google Scholar 

  • Hall DJ (1964) An experimental approach to the dynamics of a natural population of Daphnia galeata Mendotae. Ecology 45:94–112

    Article  Google Scholar 

  • Hanson PC, Johnson TB, Schindler DE, Kitchell JF (1997) Fish bioenergetics 30. WISCU-T-97–001. University of Wisconsin Sea Grant Institute, Center for Limnology, Wis.

  • Herzig A (1995) Leptodora kindtii—efficient predator and preferred prey item in Neusiedler See (Austria). Hydrobiologia 307:273–282

    Article  Google Scholar 

  • Hülsmann S (2003) Recruitment patterns of Daphnia a key for understanding midsummer declines? Hydrobiologia 491:35–46

    Article  Google Scholar 

  • Hülsmann S, Weiler W (2000) Adult not juvenile mortality as a major reason for the midsummer decline of a Daphnia population. J Plankton Res 22:151–168

    Article  Google Scholar 

  • Hülsmann S, Voigt H (2002) Life-history of Daphnia galeata in Bautzen reservoir (Germany) during spring and early summer and consequences of non-consumptive mortality for the initiation of a midsummer decline. Freshwater Biol 47:2313–2324

    Article  Google Scholar 

  • Johnsen G (1983) Egg age distribution the direct way to cladoceran birth rates. Oecologia 60:234–236

    Article  Google Scholar 

  • Lampert W, Fleckner H, Rai H, Taylor BE (1986) Phytoplankton control by grazing zooplankton: a study on the spring clear-water phase. Limnol Oceanogr 31:478–490

    Article  Google Scholar 

  • Mehner T (2000) Influence of spring warming on the predation rate of underyearling fish on Daphnia—a deterministic simulation approach. Freshwater Biol 45:253–263

    Article  Google Scholar 

  • Mehner T, Schultz H, Bauer D, Herbst R, Voigt H, Benndorf J (1996) Intraguild predation and cannibalism in age-0 perch (Perca fluviatilis) and age-0 zander (Stizostedion lucioperca): interactions with zooplankton succession prey fish availability and temperature. Ann Zool Fenn 33:353–361

    Google Scholar 

  • Mehner T, Hülsmann S, Worischka S, Plewa M, Benndorf J (1998a) Is the midsummer decline of Daphnia really induced by age-0 fish predation? Comparison of fish consumption and Daphnia mortality and life history parameters in a biomanipulated reservoir. J Plankton Res 20:1797–1811

    Article  Google Scholar 

  • Mehner T, Plewa M, Hülsmann S, Worischka S (1998b) Gape-size dependent feeding of age-0 perch (Perca fluviatilis) and age-0 zander (Stizostedion lucioperca) on Daphnia galeata. Arch Hydrobiol 142:191–207

    Google Scholar 

  • Migaud H, Mandiki R, Gardeur JN, Kestemont P, Bromage N, Fontaine P (2003) Influence of photoperiod regimes on the Eurasian perch gonadogenesis and spawning. Fish Physiol Biochem 28:395–397

    Article  CAS  Google Scholar 

  • Mooij WM, Lammens EHRR, Densen WLT (1994) Growth rate of 0+ fish in relation to temperature, body size, and food in shallow eutrophic Lake Tjeukemeer. Can J Fish Aquat Sci 51:516–526

    Article  Google Scholar 

  • Mooij WM, Hülsmann S, De Senerpont Domis LN, Nolet BA, Bodelier PLE, Boers PCM, Dionisio Pires ML, Gons HJ, Ibelings BW, Noordhuis R, Portielje R, Wolfstein K, Lammens EHRR (2005) The impact of climate change on lakes in the Netherlands: a review. Aquat Ecol 39:381–400

    Article  CAS  Google Scholar 

  • Moore MV, Folt CL, Stemberger RS (1996) Consequences of elevated temperatures for zooplankton assemblages in temperate lakes. Arch Hydrobiol 135:289–319

    Google Scholar 

  • Müller-Navarra DC, Güss S, von Storch H (1997) Interannual variability of seasonal succession events in a temperate lake and its relation to temperature variability. Global Change Biol 3:429–438

    Article  Google Scholar 

  • Petchey OL, McPhearson T, Casey TM, Morin PJ (1999) Environmental warming alters food-web structure and ecosystem function. Nature 402:69–72

    Article  CAS  Google Scholar 

  • Post DM, Kitchell JF (1997) Trophic ontogeny and life history effects on interactions between age-0 fishes and zooplankton. Arch Hydrobiol Spec Issues Adv Limnol 49:1–12

    Google Scholar 

  • Reynolds CS (1984) The ecology of freshwater phytoplankton. Cambridge University Press, Cambridge

    Google Scholar 

  • Rinke K, Vijverberg J (2005) A model approach to evaluate the effect of temperature and food concentration on individual life history and population dynamics of Daphnia. Ecol Model 186:326–344

    Article  Google Scholar 

  • Sommer U, Gliwicz ZM, Lampert W, Duncan A (1986) The PEG-model of seasonal succession of planktonic events in fresh waters. Arch Hydrobiol 106:433–471

    Google Scholar 

  • Straile D (2000) Meteorological forcing of plankton dynamics in a large and deep continental European lake. Oecologia 122:44–50

    Article  Google Scholar 

  • Straile D, Adrian R (2000) The North Atlantic Oscillation and plankton dynamics in two European lakes—two variations on a general theme. Global Change Biol 6:663–670

    Article  Google Scholar 

  • Straile D, Livingstone DM, Weyhenmeyer GA, George DG (2003) The response of freshwater ecosystems to climate variability associated with the North Atlantic Oscillation. In: Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (eds) The North Atlantic Oscillation—climatic significance and environmental impact. AGU Geophysical monograph series. AGU, pp 263–279

  • Strecker AL, Cobb TP, Vinebrooke RD (2004) Effects of experimental greenhouse warming on phytoplankton and zooplankton communities in fishless alpine ponds. Limnol Oceanogr 49:1182–1190

    Article  CAS  Google Scholar 

  • Talling JF (2003) Phytoplankton-zooplankton seasonal timing and clear-water phase in some English lakes. Freshwater Biol 48:39–52

    Article  CAS  Google Scholar 

  • Threlkeld ST (1979) The midsummer dynamics of two Daphnia species in Wintergreen Lake Michigan. Ecology 60:165–179

    Article  Google Scholar 

  • Uusitalo L, Horppila J, Eloranta P, Liljendahl-Nurminen A, Malinen T, Salonen M, Vinni M (2003) Leptodora kindti and flexible foraging behaviour of fish factors behind the delayed biomass peak of cladocerans in Lake Hiidenvesi. Int Rev Hydrobiol 88:34–48

    Article  Google Scholar 

  • Vandekerkhove J, Declerck S, Rendonck L, Conde-Porcuna JM, Jeppesen E, DeMeester L (2005) Hatching of cladocerans resting eggs: temperature and photoperiod. Freshwater Biol 50:96–104

    Article  Google Scholar 

  • Vijverberg J, Koelewijn HP (2004) Effect of temperature on development and growth of the raptorial cladoceran Leptodora kindtii under laboratory conditions. Freshwater Biol 49:1415–1422

    Article  Google Scholar 

  • Wagner A, Hülsmann S, Dörner H, Janssen M, Kahl U, Mehner T, Benndorf J (2004) Initiation of the midsummer decline of Daphnia as related to predation non-consumptive mortality and recruitment: a balance. Arch Hydrobiol 160:1–23

    Article  Google Scholar 

  • Wagner A, Hülsmann S, Bollenbach M, Benndorf J (2005) Prey or predator: piscivory as a factor controlling the role of invertebrate predators (Leptodora kindtii, Chaoborus flavicans, Piona spp.) in a biomanipulated reservoir. Verh Int Verein Limnol 29:993–996

    Google Scholar 

  • Weyhenmeyer GA, Adrian R, Gaedke U, Livingstone DN, Maberly SC (2002) Response of phytoplankton in European lakes to a change in the North Atlantic Oscillation. Verh Int Verein Limnol 28:1436–1439

    Google Scholar 

  • Winder M, Schindler DE (2004) Climatic effects on the phenology of lake processes. Global Change Biol 10:1844–1856

    Article  Google Scholar 

  • Worischka S, Mehner T (1998) Comparison of field-based and indirect estimates of daily food consumption in larval perch and zander. J Fish Biol 53:1050–1059

    Article  Google Scholar 

Download references

Acknowledgements

We thank T. Mehner for initiating the YOY fish project. We are also grateful to S. Worischka, M. Plewa, M. Janssen and T. Mehner for providing additional data on YOY fish and S. Hülsmann and H. Voigt for providing their data of D. galeata abundance, recruitment and mortality. The long-term study was facilitated by the zooplankton analyses of E. Penz, H. Kneschke, K. Kossatz, U. Hornig, R. Dumke, R. Kruspe, S. Reichel, A. Köhler, U. Miersch, B. Meltzer, A. Herschel, P. Ritter, R. Zehrer, H. Voigt, J. Kranich and M. Bollenbach. We thank G. Egerer for technical support. Furthermore, we thank A. Dettinger-Klemm, F. Wilhelm, R. Zehrer, S. Hülsmann and two anonymous reviewers for valuable comments on the manuscript. The study was financed by the Federal Ministry of Education and Research (BMBF), Germany (grant nos. 0339423A and 0339549) and by the German Research Council (DFG; project numbers Be 1671/2-1, 2-2 and 2-3). We declare that the experiments in this study comply with the current laws of Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annekatrin Wagner.

Additional information

Communicated by Ulrich Sommer.

Priority programme of the German Research Foundation—contribution 9.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, A., Benndorf, J. Climate-driven warming during spring destabilises a Daphnia population: a mechanistic food web approach. Oecologia 151, 351–364 (2007). https://doi.org/10.1007/s00442-006-0554-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-006-0554-5

Keywords

Navigation