Skip to main content

Advertisement

Log in

Imaging in Tumor Immunology

  • Review
  • Published:
Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Recent advances in immune modulation have made impressive progress in cancer immunotherapy. Because dynamic nature of the immune response often makes it difficult to evaluate therapeutic outcomes, innovative imaging technologies have been developed to enable non-invasive visualization of immune cells and tumors in their microenvironment. This review summarizes the current tumor immunology and describes new innovative imaging methods with great potential to obtain non-invasive real-time insights into the complex functions of the immune system and into the management of cancer immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Not Applicable

References

  1. Miller JF, Sadelain M. The journey from discoveries in fundamental immunology to cancer immunotherapy. Cancer Cell. 2015;27:439–49.

    Article  CAS  PubMed  Google Scholar 

  2. Kim R, Emi M, Tanabe K. Cancer immunoediting from immune surveillance to immune escape. Immunol. 2007;121:1–14.

    Article  CAS  Google Scholar 

  3. Pekarek LA, Starr BA, Toledano AY, Schreiber H. Inhibition of tumor growth by elimination of granulocytes. J Exp Med. 1995;181:435–40.

    Article  CAS  PubMed  Google Scholar 

  4. Dimitriadou V, Koutsilieris M. Mast cell-tumor interactions: for or against tumor growth and metastasis? Anticancer Res. 1997;17:1541–50.

    CAS  PubMed  Google Scholar 

  5. Dong Z, Kumar P, Yang X, Fidler IJ. Macrophage-derived metallostase is responsible for the generation of angiostatin in Lewis lung cancer. Cell. 1997;88:801–10.

    Article  CAS  PubMed  Google Scholar 

  6. Umansky V, Schirmacher V, Rocha M. New insights into tumor-host interactions in lymphocyte metastasis. J Mol Med. 1996;74:353–63.

    Article  CAS  PubMed  Google Scholar 

  7. Kirsch IR, Lista F. Lymphocyte-specific genomic instability and risk of lymphoid malignancy. Semin Immunol. 1997;9:207–15.

    Article  CAS  PubMed  Google Scholar 

  8. Male D, Roitt I. Introduction to the immune system. In: Roitt I, Borstoff J, Male D, editors. Immunology. 5th ed. London: Mosby; 1998. p. 1–12.

    Google Scholar 

  9. Yamauchi T, Moroishi T. Hippo pathway in mammalian adaptive immune system. Cells. 2019;8:398.

    Article  CAS  PubMed Central  Google Scholar 

  10. Pandolfi F, Cianci R, Pagiliari D, Casciano F, Bagalà C, Astone A, et al. The immune response to tumors as a tool toward immunotherapy. Clin Develop Immunol. 2011;2011:894704.

    Article  CAS  Google Scholar 

  11. Ramos CA, Narala N, Vyas GM, Leen AM, Gerdemann U, Sturgis EM, et al. Human papilloma-virus type 16 E6/E7-specific cytoxic T lymphocytes for adoptive immunotherapy of HPV-associated malignancies. J Immunother. 2013;36:66–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kelly GL, Stylianou J, Rasaiyaah J, Wei W, Thomas W, Croom-Carter D, et al. Different patterns of Epstein-Barr virus latency in endemic Burkitt’s lymphoma (BL) lead to distant variants within BL-associated gene expression signature. J Virol. 2013;87:2882–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Disis ML, Cheever MA. Oncogenic proteins as tumor antigens. Curr Opin Immunol. 1996;8:637–42.

    Article  CAS  PubMed  Google Scholar 

  14. Hsieh MY, Lu SN, Wang LY, et al. Alpha-fetpprotein in patients with hepatoma after transcatheter arterial embolization. J Gastroent Hepatol. 1992;7:614–7.

    Article  CAS  Google Scholar 

  15. Wang B, Zaidi N, He LZ, Liu TY, Su WP, Lin ZY, et al. Targeting of the non-mutated tumor antigen HER2/neu to mature dendritic cells induces an integrated immune response that protects against breast cancer in mice. Brit Cancer Res. 2012;14:R39–43.

    Article  CAS  Google Scholar 

  16. Rook G, Balkwill F. Cell-mediated immune reactions. In: Roitt I, Borstoff J, Male D, editors. Immunology. 5th ed. London: Mosby; 1998. p. 131–8.

    Google Scholar 

  17. Owen M. T cell receptors and MHC molecules. In: Roitt I, Borstoff J, Male D, editors. Immunology. 5th ed. London: Mosby; 1998. p. 83–92.

    Google Scholar 

  18. Acharya N, Anderson AC. NRP1 cripples immunological memory. Nat Immunol. 2020;21:972–3.

    Article  CAS  PubMed  Google Scholar 

  19. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392:245–52.

    Article  CAS  PubMed  Google Scholar 

  20. Ottobrini L, Martelli C, Trabattoni DL, Clerici M, Lucignani G. In vivo imaging of immune cell trafficking in cancer. Eur J Nucl Med Mol Imaging. 2011;38:949–68.

    Article  PubMed  Google Scholar 

  21. Cella M, Sallusto F, Lanzavecchia A. Origin, maturation and antigen presenting function of dendritic cells. Curr Opin Immunol. 1997;9:10–6.

    Article  CAS  PubMed  Google Scholar 

  22. Feldmann M, Steinman L. Design of effective immunotherapy for human autoimmunity. Nature. 2005;435:612–9.

    Article  CAS  PubMed  Google Scholar 

  23. Chawla A. Control of macrophage activation and function by PPARs. Circ Res. 2010;106:1559–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chanmee T, Ontong P, Konno K, Itano N. Tumor-associated macrophages as major players in the tumor microenvironment. Cancers. 2014;6:1670–90.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jackute J, Zemaitis M, Pranys D, Sitkauskiene B, Miliauskas S, Vaitkiene S, et al. Distribution of M1 and M2 macrophages in tumor islets and stroma in relation to prognosis of non-small cell lung cancer. BMC Immunol. 2018;19:3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Quaranta V, Schmid MC. Macrophages-mediated subversion of antitumor immunity. Cells. 2019;8:747–52.

    Article  CAS  PubMed Central  Google Scholar 

  27. Malik S, Balkwill F. Epithelial ovarian cancer: a cytokine propelled disease? Brit J Cancer. 1991;64:617–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wu S, Rodabaugh K, Watson JM, Watson JM, Silberstein DS, Boyer CM, et al. Stimulation of ovarian tumor cell proliferation with monocyte products including IL-1-α. IL-6 and TNF-α. Am J Obstet Gynecol. 1992;166:997–1007.

    Article  CAS  PubMed  Google Scholar 

  29. Mantovani A. The growing diversity and spectrum of action of myeloid-derived suppressor cells. Eur J Immunol. 2010;40:3317–20.

    Article  CAS  PubMed  Google Scholar 

  30. Lin A, Yan WH. Heterogeneity of HLA-G expression in cancers facing the challenges. Front Immunol. 2018;9:2164–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12:252–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cai L, Michelakos T, Yamada T, Fan S, Wang X, Schwabet JH, et al. Defective HLA class I antigen processing machinery in cancer. Cancer Immunol Immunother. 2018;67:999–1009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mojic M, Takeda K, Hayakawa Y. The dark side of IFN-γ: its role in promoting cancer immunoevasion. Int J Mol Sci. 2017;19:89–94.

    Article  PubMed Central  CAS  Google Scholar 

  34. Vinay DS, Ryan EP, Pawelec G, Talib WH, Stagg J, Elkord E, et al. Immune evasion in cancer: mechanistic basis and therapeutic strategies. Semin Cancer Biol. 2015;35(Suppl):S185–98.

    Article  PubMed  CAS  Google Scholar 

  35. Tirapu I, Huarte E, Guiducci C, Arina A, Zaratiegui M, Murillo O, et al. Low surface expression of B7–1 (CD80) is an immunoescape mechanism of colon carcinoma. Cancer Res. 2006;66:2442–50.

    Article  CAS  PubMed  Google Scholar 

  36. Buchbinder EI, Desai A. CTLA-4 and PD-1 pathways: similarities, differences and implications of their inhibition. Am J Clin Oncol. 2016;39:98–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Frenzel A, Grespi F, Chmelewskij W, Villunger A. Bcl2 family proteins in carcinogenesis and the treatment of cancer. Apoptosis. 2009;14:584–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Obexer P, Ausserlechner MJ. X-linked inhibitor of apoptosis proteins: a critical resistance regulator and therapeutic target for personalized cancer therapy. Front Oncol. 2014;4:197–200.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Chen DS, Mellmand I. Oncology meets immunology: the cancer immunity cycle. Immunity. 2013;39:1–10.

    Article  PubMed  CAS  Google Scholar 

  40. Monjazeb AR, Zamora AE, Grossenbacher SK, Mirsoian A, Sckisel GD, Murphy WJ. Immunoediting and antigen loss: overcoming the achilles heel of immunotherapy with antigen non-specific therapies. Front Oncol. 2013;3:197.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Polanczyk MJ, Walker E, Haley D, Guerrouahen BS, Akporiaye ET. Blockade of TGF-β signaling to enhance the antitumor response is accompanied by dysregulation of the functional activity of CD4 + CD25 + Foxp3 + and CD4 + CD25 - Foxp3 + T cells. J Transl Med. 2019;17:219–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Quezada SA, Peggs KS, Simpson TR, Allison JP. Shifting the equilibrium in cancer immunoediting: from tumor tolerance to eradication. Immunol Rev. 2011;241:104–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shah W, Yan X, Jing L, Zhou Y, Chen H, Wang Y. A reversed CD4/CD8 ratio of TIL and a high percentage of CD4+ FOXP3+ regulatory T cells are significantly associated with clinical outcome in squamous cell carcinoma of the cervix. Cell Mol Immunol. 2011;8:59–66.

    Article  PubMed  CAS  Google Scholar 

  44. Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting. Ann Rev Immunol. 2004;22:329–60.

    Article  CAS  Google Scholar 

  45. Mittal D, Gubin MM, Schreiber RD, Smyth MJ. New insights into cancer immunoediting and its three phases. Curr Opin Immunol. 2014;27:16–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Brunner-Weinzierl MC, Rudd CE. CTLA-4 and PD-1 control of T cell motility and migration: implication for tumor immunotherapy. Front Immunol. 2018;9:2737–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Feins S, Kong W, Williams EF, Milone MC, Fraietta JA. An introduction to chimeric antigen receptor (CAR) T cell immunotherapy for human cancer. Am J Hematol. 2019;94:S3–9.

    Article  CAS  PubMed  Google Scholar 

  48. Abbas AK. Cells and tissues of the immune system. In: Abbas AK, Lichtman AHH, Pillai S, editors. Cellular and Molecular Immunology. London: Elsevier; 2018. p. 409–16.

    Google Scholar 

  49. Igney FH, Krammer PH. Death and anti-death: tumor resistance to apoptosis. Nat Rev Cancer. 2002;2:277–88.

    Article  CAS  PubMed  Google Scholar 

  50. Liu K, Iyoda T, Saternus M, Kimura Y, Inaaba K, Steinman R. Immune tolerance after delivery of dying cells to dendritic cells in situ. J Exp Med. 2002;196:1091–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kroemer G, El-Deiry WS, Goldstein P, Peter ME, Vaux D, Vandenabeele P, et al. Classification of cell death: recommendations of the nomenclature committee of cell death. Cell Death Differ. 2005;12(Suppl II):1463–7.

    Article  CAS  PubMed  Google Scholar 

  52. Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini J-L, et al. Calreticulin exposure dictates the immugeneity of cancer cell death. Nat Med. 2007;13:54–61.

    Article  CAS  PubMed  Google Scholar 

  53. Lake RA, van der Most RG. A better way for a cancer cell to die. N Engl J Med. 2006;354:2503–4.

    Article  CAS  PubMed  Google Scholar 

  54. Syn NL, Teng MW, Mok TS, Soo RA. De-novo and acquired resistance to immune checkpoint targeting. Lancet Oncol. 2017;18:e731–41.

    Article  PubMed  Google Scholar 

  55. Dunn GP, Koebel CM, Schreiber RD. Interferons, immunity and cancer immunoediting. Nat Rev Immunol. 2006;6:836–48.

    Article  CAS  PubMed  Google Scholar 

  56. Lampreht Tratar U, Harvat S, Cemazar M. Transgenic mouse model in cancer research. Front Oncol. 2018;8:268.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Gaudet J, Mansfield J, Goodwill P. Imaging cancer immunology: tracking immune cells in vivo with magnetic particle imaging. J Immunol. 2019;202(Suppl 1):1307–15.

    Article  Google Scholar 

  58. Mansfield J, Ren G, Gaudet J, Zhang Y, Gerosa M, Wintermark M, et al. Imaging cancer immunology: systemic tracking of immune cells in vivo with magnetic particle imaging. J Nucl Med. 2020;61(suppl 1):101–6.

    Google Scholar 

  59. El Ansary M, Mogawer S, Elhamid SA, Alwakil S, Aboelkasem F, Sabaawy HE, et al. Immunotherapy by autologous dendritic cell vaccine in patients with advanced hepatocellular carcinoma. J Cancer Res Clin Oncol. 2013;139:39–48.

    Article  PubMed  CAS  Google Scholar 

  60. McCarthy CE, White JM, Viola NT, Gibson HM. In vivo imaging technologies to monitor the immune system. Front Immunol. 2020;11:1067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dimitrakopoulou-Strauss A. Monitoring of patients with metastatic melanoma treated with immune checkpoint inhibitors using PET-CT. Cancer Immunol Immunother. 2019;68:813–22.

    Article  CAS  PubMed  Google Scholar 

  62. Shah MN, Nagle SJ, Torigian DA, Farwell MD, Hwang W-T, Frey N, et al. Early PET/CT as a predictor of response after CTL019 chimeric antigen receptor-T-cell therapy in B-cell non-Hodgkin’s lymphoma. Cytotherapy. 2018;20:1415–8.

    Article  CAS  PubMed  Google Scholar 

  63. Perez-Medina C, Tang J, Abdel-Atti D, Hogstad B, Merad M, Fisher E, et al. PET imaging of TAM with Zr-89 labeled high-density lipoprotein nanoparticles. J Nucl Med. 2015;56:1272–7.

    Article  CAS  PubMed  Google Scholar 

  64. Meller B, Frohn C, Brand JM, Lauer I, Schelper LF, von Hof K, et al. Monitoring of a new approach of immunotherapy with allogenic In-111 labeled NK cells in patients with renal cell carcinoma. Eur J Nucl Med Mol Imaging. 2004;31:403–7.

    Article  PubMed  Google Scholar 

  65. Galli F, Rapisarda AS, Stabile H, Malviya G, Manni I, Bonanno E, et al. In vivo imaging of NK cell trafficking in tumors. J Nucl Med. 2015;56:1575–80.

    Article  CAS  PubMed  Google Scholar 

  66. Deri MA, Zeglis BM, Francesconi LC, Lewis JS. PET imaging with Zr-89 from radiochemistry to the clinic. Nucl Med Biol. 2013;40:3–14.

    Article  CAS  PubMed  Google Scholar 

  67. Zhou Y, Baidoo KE, Brechbiel MW. Mapping biological behaviors by application of lobger-lived positron emitting radionuclides. Adv Drug Deliv Rev. 2013;65:1098–111.

    Article  CAS  PubMed  Google Scholar 

  68. Wolfs E, Verfaillie CM, van Laere K, Deroose CM. Radiolabeling strategies for radionuclide imaging of stem cells. Stem Cell Rev. 2015;11:254–74.

    Article  CAS  Google Scholar 

  69. Meidenbauer N, Marienhagen J, Laumer M, Laumer M, Vogl S, Heymann J, et al. Survival and tumor localization of adoptively transferred melan-A specific T cells in melanoma patients. J Immunol. 2003;170:2161–9.

    Article  CAS  PubMed  Google Scholar 

  70. Parente-Pireira AC, Burnet J, Ellison D, Foster J, Davies DM, Stegen S, et al. Trafficking of CAR-engineered human T cells following regional or systemic adoptive transfer in SCID beige mice. J Clin Immunol. 2011;31:710–8.

    Article  CAS  Google Scholar 

  71. Pittet MJ, Grimm J, Berger CR, Tamura T, Wojtkiewicz G, Nahrendorf M, et al. In vivo imaging of T cell delivery to tumors after adoptive transfer therapy. Proc Natl Acad Sci USA. 2007;104:12457–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Stanton SE, Eary JF, Marzbani EA, Mankoff D, Salazar LG, Higgins D, et al. Concurrent SPECT-PET/CT imaging as a method for tracking adoptively transferred T cells in vivo. J Immunother Cancer. 2016;4:27–32.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Bernhard H, Neudorfer J, Gebhard K, Conrad H, Hermann C, Nährig J, et al. Adoptive transfer of autologous HER-2 specific, cytotoxic T lymphocytes for the treatment of HER-2 overexpressing breast cancer. Cancer Immunol Immunother. 2008;57:271–80.

    Article  PubMed  Google Scholar 

  74. Keu KV, Witney TH, Yaghoubi S, Rosenberg J, Kurien A, Magnusson R, et al. Reporter gene imaging of targeted T cell immunotherapy in recurrent glioma. Sci Transl Med. 2017;9:eaag2196.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Wold ED, Smider VV, Felding BH. Antibody therapeutics in oncology. Immunotherapy. 2016;2:108–17.

    PubMed  Google Scholar 

  76. Malviya G, Galli F, Sonni I, Signore A. Imaging T lymphocytes in inflammatory diseases: a nuclear medicine approach. Q J Nucl Med Mol Imaging. 2014;58:237–57.

    CAS  PubMed  Google Scholar 

  77. Chen CL, Siow TY, Chou CH, Lin CH, Lin MH, Chen YC, et al. Targeted superparamagnetic iron oxide nanoparticles for in vivo MRI of T cells in rheumatoid arthritis. Mol Imaging Biol. 2017;19:233–44.

    Article  CAS  PubMed  Google Scholar 

  78. Wu AM, Senter PD. Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotech. 2005;23:1137–46.

    Article  CAS  Google Scholar 

  79. Tavare R, Escuin-Ordinas H, Mok S, McCracken MN, Zettlitz KA, Salazar FB, et al. An effective immune-PET imaging method to monitor CD8-dependent responses to immunotherapy. Cancer Res. 2016;76:73–82.

    Article  CAS  PubMed  Google Scholar 

  80. Zettlitz KA, Tavare R, Tsai WTK, Yamada RE, Ha NS, Collins J, et al. F-18 labeled anti-human CD20 cys-diabody for same-day immune PET in a model of aggressive B-cell lymphoma in human CD20 transgenic mice. Eur J Nucl Med Mol Imaging. 2019;46:489–500.

    Article  CAS  PubMed  Google Scholar 

  81. Muylle K, Flamen P, Vugts DJ, Guiot T, Ghanem G, Meuleman N, et al. Tumor targeting and radiation dose of radioimmunotherapy with Y-90 rituximab in CD20+ B cell lymphoma as predicted by Zr-89 rituximab immune-PET. Eur J Nucl Med Mol Imaging. 2015;42:1304–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Li D, Cheng S, Zou S, Zhu D, Zhu T, Wang P, et al. Immuno-PET imaging of Zr-89 labeled anti-PD-L1 domain antibody. Mol Pharm. 2018;15:1674–81.

    Article  CAS  PubMed  Google Scholar 

  83. Chatterjee S, Lesniak WG, Gabrielson M, Lisok A, Wharram B, Sysa-Shah P, et al. A humanized antibody for imaging immune checkpoint ligand PD-L1 expression in tumors. Oncotarget. 2016;7:10215–27.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Natarajan A, Patel CB, Habte F, Gambhir SS. Dosimetry prediction for clinical translocation of Cu-64 pembrolizumab immune-PET targeting human PD-1 expression. Sci Rep. 2018;8:633.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Higashikawa K, Yagi K, Watanabe K, Kamino S, Ueda M, Hiromura M, et al. Cu-64 DOTA anti-CTLA-4 monoclonal antibody enabled PET visualization of CTLA-4 on the T cell infiltrating tumor tissue. PLoS ONE. 2014;9:e109866.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Vis R, Malviya G, Signore A, Grutter JC, Meek B, Garde EMW, et al. Tc-99m anti-TNF-α antibody for the imaging of disease activity in pulmonary sarcoidosis. Eur Respir J. 2016;47:1198–207.

    Article  CAS  PubMed  Google Scholar 

  87. Gibson HM, McKnight BN, Malysa A, Dyson G, Wiesend WN, McCarthy CE, et al. Interferon γ PET imaging as a predictive tool for monitoring response to immunotherapy. Cancer Res. 2018;78:5706–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Oude Munnink TH, Arjaans MEA, Timmer-Bosscha H, Schroder CP, Hesselink JW, Vedelaar SR, et al. PET with Zr-89 labeled transforming growth factor-β antibody fresolimumab in tumor models. J Nucl Med. 2011;52:2001–8.

    Article  CAS  PubMed  Google Scholar 

  89. Hartimath SV, Draghicin O, van de Wall S, Manuelli V, Dierckx RAJO, Nijman HW, et al. Noninvasive monitoring of cancer therapy induced activated T cells using F-18 FB-IL-2 PET imaging. Oncoimmunol. 2017;6:e1248014.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by grants (no.2011–0030680 and 2020R1A2C2011695 for H. Youn) from the National Research Foundation (NRF), Ministry of Science and ICT (MSIT), Republic of Korea.

Author information

Authors and Affiliations

Authors

Contributions

E.E.K. wrote the initial draft, K.W.K and H.Y. revised, and E.E.K and H.Y. wrote the final manuscript.

Corresponding authors

Correspondence to Euishin Edmund Kim or Hyewon Youn.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

All authors read the final manuscript and consent for publication.

Competing Interests

Euishin Edmund Kim, Hyewon Youn and Keon Wook Kang declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, E.E., Youn, H. & Kang, K.W. Imaging in Tumor Immunology. Nucl Med Mol Imaging 55, 225–236 (2021). https://doi.org/10.1007/s13139-021-00706-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13139-021-00706-6

Keywords

Navigation