Skip to main content

Advertisement

Log in

Defective HLA class I antigen processing machinery in cancer

  • Focussed Research Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Malignant transformation of cells is frequently associated with defective HLA class I antigen processing machinery (APM) component expression. This abnormality may have functional relevance, since it may have a negative impact on tumor cell recognition by cognate T cells. Furthermore, HLA class I APM abnormalities appear to have clinical significance, since they are associated with poor prognosis in several malignant diseases and may play a role in the resistance to immune checkpoint inhibitor-based immunotherapy. In this paper, we have reviewed the literature describing abnormalities in HLA class I APM component expression in many types of cancer. These abnormalities have been reported in all types of cancer analyzed with a frequency ranging between a minimum of 35.8% in renal cancer and a maximum of 87.9% in thyroid cancer for HLA class I heavy chains. In addition, we have described the molecular mechanisms underlying defects in HLA class I APM component expression and function by malignant cells. Lastly, we have discussed the clinical significance of HLA class I APM component abnormalities in malignant tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

APM:

Antigen processing machinery

β2m:

β2-Microglobulin

EGFR:

Epidermal growth factor receptor

ERp57:

Endoplasmic reticulum protein 57

HDAC:

Histone deacetylase

HLA:

Human leukocyte antigen

LMP:

Low molecular weight polypeptide

mAb:

Monoclonal antibody

MAPK:

Mitogen-activated protein kinases

PD-1:

Programmed death 1 receptor

PD-L1:

Programmed death ligand 1

PDX:

Patient-derived xenograft

TAP:

Transporter associated with antigen processing

References

  1. Campoli M, Ferrone S (2008) HLA antigen changes in malignant cells: epigenetic mechanisms and biologic significance. Oncogene 27(45):5869–5885. https://doi.org/10.1038/onc.2008.273

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Seliger B, Kloor M, Ferrone S (2017) HLA class II antigen-processing pathway in tumors: molecular defects and clinical relevance. Oncoimmunology 6(2):e1171447. https://doi.org/10.1080/2162402X.2016.1171447

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Fridman WH, Pages F, Sautes-Fridman C, Galon J (2012) The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 12(4):298–306. https://doi.org/10.1038/nrc3245

    Article  PubMed  CAS  Google Scholar 

  4. Chang CC, Pirozzi G, Wen SH, Chung IH, Chiu BL, Errico S, Luongo M, Lombardi ML, Ferrone S (2015) Multiple structural and epigenetic defects in the human leukocyte antigen class I antigen presentation pathway in a recurrent metastatic melanoma following immunotherapy. J Biol Chem 290(44):26562–26575. https://doi.org/10.1074/jbc.M115.676130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Garrido F, Perea F, Bernal M, Sanchez-Palencia A, Aptsiauri N, Ruiz-Cabello F (2017) The escape of cancer from T cell-mediated immune surveillance: HLA class I loss and tumor tissue architecture. Vaccines (Basel). https://doi.org/10.3390/vaccines5010007

    Article  Google Scholar 

  6. Marincola FM, Jaffee EM, Hicklin DJ, Ferrone S (2000) Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv Immunol 74:181–273

    Article  PubMed  CAS  Google Scholar 

  7. Hicklin DJ, Marincola FM, Ferrone S (1999) HLA class I antigen downregulation in human cancers: T-cell immunotherapy revives an old story. Mol Med Today 5(4):178–186

    Article  PubMed  CAS  Google Scholar 

  8. Rosenberg SA, Dudley ME, Restifo NP (2008) Cancer immunotherapy. N Engl J Med 359(10):1072. https://doi.org/10.1056/NEJMc081511

    Article  PubMed  CAS  Google Scholar 

  9. Bot A, Obrocea M, Marincola FM (2011) Cancer vaccines at an inflexion point: what next? J Transl Med 9:148. https://doi.org/10.1186/1479-5876-9-148

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sharma P, Allison JP (2015) The future of immune checkpoint therapy. Science 348(6230):56–61. https://doi.org/10.1126/science.aaa8172

    Article  PubMed  CAS  Google Scholar 

  11. Topalian SL, Taube JM, Anders RA, Pardoll DM (2016) Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer 16(5):275–287. https://doi.org/10.1038/nrc.2016.36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Zaretsky JM, Garcia-Diaz A, Shin DS, Escuin-Ordinas H, Hugo W, Hu-Lieskovan S, Torrejon DY, Abril-Rodriguez G, Sandoval S, Barthly L, Saco J, Homet Moreno B, Mezzadra R, Chmielowski B, Ruchalski K, Shintaku IP, Sanchez PJ, Puig-Saus C, Cherry G, Seja E, Kong X, Pang J, Berent-Maoz B, Comin-Anduix B, Graeber TG, Tumeh PC, Schumacher TN, Lo RS, Ribas A (2016) Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med 375(9):819–829. https://doi.org/10.1056/NEJMoa1604958

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Gettinger S, Choi J, Hastings K, Truini A, Datar I, Sowell R, Wurtz A, Dong W, Cai G, Melnick MA, Du VY, Schlessinger J, Goldberg SB, Chiang A, Sanmamed MF, Melero I, Agorreta J, Montuenga LM, Lifton R, Ferrone S, Kavathas P, Rimm DL, Kaech SM, Schalper K, Herbst RS, Politi K (2017) Impaired HLA class I antigen processing and presentation as a mechanism of acquired resistance to immune checkpoint inhibitors in lung cancer. Cancer Discov 7(12):1420–1435. https://doi.org/10.1158/2159-8290.CD-17-0593

    Article  PubMed  CAS  Google Scholar 

  14. Sade-Feldman M, Jiao YJ, Chen JH, Rooney MS, Barzily-Rokni M, Eliane JP, Bjorgaard SL, Hammond MR, Vitzthum H, Blackmon SM, Frederick DT, Hazar-Rethinam M, Nadres BA, Van Seventer EE, Shukla SA, Yizhak K, Ray JP, Rosebrock D, Livitz D, Adalsteinsson V, Getz G, Duncan LM, Li B, Corcoran RB, Lawrence DP, Stemmer-Rachamimov A, Boland GM, Landau DA, Flaherty KT, Sullivan RJ, Hacohen N (2017) Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nat Commun 8(1):1136. https://doi.org/10.1038/s41467-017-01062-w

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Sabbatino F, Villani V, Yearley JH, Deshpande V, Cai L, Konstantinidis IT, Moon C, Nota S, Wang Y, Al-Sukaini A, Zhu AX, Goyal L, Ting DT, Bardeesy N, Hong TS, Fernandez-del Castillo C, Tanabe KK, Lillemoe KD, Ferrone S, Ferrone CR (2016) PD-L1 and HLA class I antigen expression and clinical course of the disease in intrahepatic cholangiocarcinoma. Clin Cancer Res 22(2):470–478. https://doi.org/10.1158/1078-0432.CCR-15-0715

    Article  PubMed  CAS  Google Scholar 

  16. Ito S, Okano S, Morita M, Saeki H, Tsutsumi S, Tsukihara H, Nakashima Y, Ando K, Imamura Y, Ohgaki K, Oki E, Kitao H, Mimori K, Maehara Y (2016) Expression of PD-L1 and HLA class I in esophageal squamous cell carcinoma: prognostic factors for patient outcome. Ann Surg Oncol 23(Suppl 4):508–515. https://doi.org/10.1245/s10434-016-5376-z

    Article  PubMed  Google Scholar 

  17. Cai L, Michelakos T, Yamada T, Fan S, Schwab JH, Ferrone CR, Ferrone S (2017) HLA class I antigen-processing machinery in cancer. In: Lisa H (ed) Cancer immunotherapy principles and practice, 1st edn. Springer, New York, pp 44–70

    Google Scholar 

  18. Kaklamanis L, Leek R, Koukourakis M, Gatter KC, Harris AL (1995) Loss of transporter in antigen processing 1 transport protein and major histocompatibility complex class I molecules in metastatic versus primary breast cancer. Cancer Res 55(22):5191–5194

    PubMed  CAS  Google Scholar 

  19. Kageshita T, Hirai S, Ono T, Hicklin DJ, Ferrone S (1999) Downregulation of HLA class I antigen-processing molecules in malignant melanoma: association with disease progression. Am J Pathol 154(3):745–754. https://doi.org/10.1016/S0002-9440(10)65321-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Kageshita T, Wang Z, Calorini L, Yoshii A, Kimura T, Ono T, Gattoni-Celli S, Ferrone S (1993) Selective loss of human leukocyte class I allospecificities and staining of melanoma cells by monoclonal antibodies recognizing monomorphic determinants of class I human leukocyte antigens. Cancer Res 53(14):3349–3354

    PubMed  CAS  Google Scholar 

  21. Wang Z, Marincola FM, Rivoltini L, Parmiani G, Ferrone S (1999) Selective histocompatibility leukocyte antigen (HLA)-A2 loss caused by aberrant pre-mRNA splicing in 624MEL28 melanoma cells. J Exp Med 190(2):205–215

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Chang CC, Campoli M, Restifo NP, Wang X, Ferrone S (2005) Immune selection of hot-spot beta 2-microglobulin gene mutations, HLA-A2 allospecificity loss, and antigen-processing machinery component downregulation in melanoma cells derived from recurrent metastases following immunotherapy. J Immunol 174(3):1462–1471

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Seliger B, Ritz U, Abele R, Bock M, Tampe R, Sutter G, Drexler I, Huber C, Ferrone S (2001) Immune escape of melanoma: first evidence of structural alterations in two distinct components of the MHC class I antigen processing pathway. Cancer Res 61(24):8647–8650

    PubMed  CAS  Google Scholar 

  24. Pereira C, Gimenez-Xavier P, Pros E, Pajares MJ, Moro M, Gomez A, Navarro A, Condom E, Moran S, Gomez-Lopez G, Grana O, Rubio-Camarillo M, Martinez-Marti A, Yokota J, Carretero J, Galbis JM, Nadal E, Pisano D, Sozzi G, Felip E, Montuenga LM, Roz L, Villanueva A, Sanchez-Cespedes M (2017) Genomic profiling of patient-derived xenografts for lung cancer identifies B2M inactivation Impairing Immunorecognition. Clin Cancer Res 23(12):3203–3213. https://doi.org/10.1158/1078-0432.CCR-16-1946

    Article  PubMed  CAS  Google Scholar 

  25. Goodfellow PN, Jones EA, Van Heyningen V, Solomon E, Bobrow M, Miggiano V, Bodmer WF (1975) The beta2-microglobulin gene is on chromosome 15 and not in the HL-A region. Nature 254(5497):267–269

    Article  PubMed  CAS  Google Scholar 

  26. Chen HL, Gabrilovich D, Tampe R, Girgis KR, Nadaf S, Carbone DP (1996) A functionally defective allele of TAP1 results in loss of MHC class I antigen presentation in a human lung cancer. Nat Genet 13(2):210–213. https://doi.org/10.1038/ng0696-210

    Article  PubMed  CAS  Google Scholar 

  27. Chang CC, Campoli M, Ferrone S (2005) Classical and nonclassical HLA class I antigen and NK Cell-activating ligand changes in malignant cells: current challenges and future directions. Adv Cancer Res 93:189–234. https://doi.org/10.1016/S0065-230X(05)93006-6

    Article  PubMed  CAS  Google Scholar 

  28. Francke U, Pellegrino MA (1977) Assignment of the major histocompatibility complex to a region of the short arm of human chromosome 6. Proc Natl Acad Sci USA 74(3):1147–1151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. McGranahan N, Rosenthal R, Hiley CT, Rowan AJ, Watkins TBK, Wilson GA, Birkbak NJ, Veeriah S, Van Loo P, Herrero J, Swanton C, Consortium TR (2017) Allele-specific HLA loss and immune escape in lung cancer evolution. Cell 171(6):1259–1271. e11. https://doi.org/10.1016/j.cell.2017.10.001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Faber HE, Kucherlapati RS, Poulik MD, Ruddle FH, Smithies O (1976) beta2-microglobulin locus on human chromosome 15. Somat Cell Genet 2(2):141–153

    Article  PubMed  CAS  Google Scholar 

  31. Maleno I, Aptsiauri N, Cabrera T, Gallego A, Paschen A, Lopez-Nevot MA, Garrido F (2011) Frequent loss of heterozygosity in the beta2-microglobulin region of chromosome 15 in primary human tumors. Immunogenetics 63(2):65–71. https://doi.org/10.1007/s00251-010-0494-4

    Article  PubMed  CAS  Google Scholar 

  32. Maleno I, Romero JM, Cabrera T, Paco L, Aptsiauri N, Cozar JM, Tallada M, Lopez-Nevot MA, Garrido F (2006) LOH at 6p21.3 region and HLA class I altered phenotypes in bladder carcinomas. Immunogenetics 58(7):503–510. https://doi.org/10.1007/s00251-006-0111-8

    Article  PubMed  CAS  Google Scholar 

  33. Maleno I, Lopez-Nevot MA, Cabrera T, Salinero J, Garrido F (2002) Multiple mechanisms generate HLA class I altered phenotypes in laryngeal carcinomas: high frequency of HLA haplotype loss associated with loss of heterozygosity in chromosome region 6p21. Cancer Immunol Immunother 51(7):389–396. https://doi.org/10.1007/s00262-002-0296-0

    Article  PubMed  CAS  Google Scholar 

  34. Maleno I, Cabrera CM, Cabrera T, Paco L, Lopez-Nevot MA, Collado A, Ferron A, Garrido F (2004) Distribution of HLA class I altered phenotypes in colorectal carcinomas: high frequency of HLA haplotype loss associated with loss of heterozygosity in chromosome region 6p21. Immunogenetics 56(4):244–253. https://doi.org/10.1007/s00251-004-0692-z

    Article  PubMed  CAS  Google Scholar 

  35. Yeung JT, Hamilton RL, Ohnishi K, Ikeura M, Potter DM, Nikiforova MN, Ferrone S, Jakacki RI, Pollack IF, Okada H (2013) LOH in the HLA class I region at 6p21 is associated with shorter survival in newly diagnosed adult glioblastoma. Clin Cancer Res 19(7):1816–1826. https://doi.org/10.1158/1078-0432.CCR-12-2861

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Chowell D, Morris LGT, Grigg CM, Weber JK, Samstein RM, Makarov V, Kuo F, Kendall SM, Requena D, Riaz N, Greenbaum B, Carroll J, Garon E, Hyman DM, Zehir A, Solit D, Berger M, Zhou R, Rizvi NA, Chan TA (2017) Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science. https://doi.org/10.1126/science.aao4572

    Article  PubMed  PubMed Central  Google Scholar 

  37. Nie Y, Yang G, Song Y, Zhao X, So C, Liao J, Wang LD, Yang CS (2001) DNA hypermethylation is a mechanism for loss of expression of the HLA class I genes in human esophageal squamous cell carcinomas. Carcinogenesis 22(10):1615–1623

    Article  PubMed  CAS  Google Scholar 

  38. Serrano A, Tanzarella S, Lionello I, Mendez R, Traversari C, Ruiz-Cabello F, Garrido F (2001) Rexpression of HLA class I antigens and restoration of antigen-specific CTL response in melanoma cells following 5-aza-2′-deoxycytidine treatment. Int J Cancer 94(2):243–251

    Article  PubMed  CAS  Google Scholar 

  39. Fonsatti E, Sigalotti L, Coral S, Colizzi F, Altomonte M, Maio M (2003) Methylation-regulated expression of HLA class I antigens in melanoma. Int J Cancer 105(3):430–431. https://doi.org/10.1002/ijc.11077 (author reply 432–433)

    Article  PubMed  CAS  Google Scholar 

  40. Dai W, Zheng H, Cheung AK, Lung ML (2016) Genetic and epigenetic landscape of nasopharyngeal carcinoma. Chin Clin Oncol 5(2):16. https://doi.org/10.21037/cco.2016.03.06

    Article  PubMed  Google Scholar 

  41. Fonsatti E, Nicolay HJ, Sigalotti L, Calabro L, Pezzani L, Colizzi F, Altomonte M, Guidoboni M, Marincola FM, Maio M (2007) Functional up-regulation of human leukocyte antigen class I antigens expression by 5-aza-2′-deoxycytidine in cutaneous melanoma: immunotherapeutic implications. Clin Cancer Res 13(11):3333–3338. https://doi.org/10.1158/1078-0432.CCR-06-3091

    Article  PubMed  CAS  Google Scholar 

  42. Maio M, Di Giacomo AM, Robert C, Eggermont AM (2013) Update on the role of ipilimumab in melanoma and first data on new combination therapies. Curr Opin Oncol 25(2):166–172. https://doi.org/10.1097/CCO.0b013e32835dae4f

    Article  PubMed  CAS  Google Scholar 

  43. Covre A, Coral S, Nicolay H, Parisi G, Fazio C, Colizzi F, Fratta E, Di Giacomo AM, Sigalotti L, Natali PG, Maio M (2015) Antitumor activity of epigenetic immunomodulation combined with CTLA-4 blockade in syngeneic mouse models. Oncoimmunology 4(8):e1019978. https://doi.org/10.1080/2162402X.2015.1019978

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Gameiro SR, Malamas AS, Tsang KY, Ferrone S, Hodge JW (2016) Inhibitors of histone deacetylase 1 reverse the immune evasion phenotype to enhance T-cell mediated lysis of prostate and breast carcinoma cells. Oncotarget 7(7):7390–7402. https://doi.org/10.18632/oncotarget.7180

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sabbatino F, Wang Y, Scognamiglio G, Favoino E, Feldman SA, Villani V, Flaherty KT, Nota S, Giannarelli D, Simeone E, Anniciello AM, Palmieri G, Pepe S, Botti G, Ascierto PA, Ferrone CR, Ferrone S (2016) Antitumor activity of BRAF inhibitor and IFNalpha combination in BRAF-mutant melanoma. J Natl Cancer Inst. https://doi.org/10.1093/jnci/djv435

    Article  PubMed  PubMed Central  Google Scholar 

  46. Brea EJ, Oh CY, Manchado E, Budhu S, Gejman RS, Mo G, Mondello P, Han JE, Jarvis CA, Ulmert D, Xiang Q, Chang AY, Garippa RJ, Merghoub T, Wolchok JD, Rosen N, Lowe SW, Scheinberg DA (2016) Kinase regulation of human MHC class I molecule expression on cancer cells. Cancer Immunol Res 4(11):936–947. https://doi.org/10.1158/2326-6066.CIR-16-0177

    Article  PubMed  PubMed Central  Google Scholar 

  47. Boni A, Cogdill AP, Dang P, Udayakumar D, Njauw CN, Sloss CM, Ferrone CR, Flaherty KT, Lawrence DP, Fisher DE, Tsao H, Wargo JA (2010) Selective BRAFV600E inhibition enhances T-cell recognition of melanoma without affecting lymphocyte function. Cancer Res 70(13):5213–5219. https://doi.org/10.1158/0008-5472.CAN-10-0118

    Article  PubMed  CAS  Google Scholar 

  48. Lopez-Albaitero A, Lee SC, Morgan S, Grandis JR, Gooding WE, Ferrone S, Ferris RL (2009) Role of polymorphic Fc gamma receptor IIIa and EGFR expression level in cetuximab mediated, NK cell dependent in vitro cytotoxicity of head and neck squamous cell carcinoma cells. Cancer Immunol Immunother 58(11):1853–1864. https://doi.org/10.1007/s00262-009-0697-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Donia M, Harbst K, van Buuren M, Kvistborg P, Lindberg MF, Andersen R, Idorn M, Munir Ahmad S, Ellebaek E, Mueller A, Fagone P, Nicoletti F, Libra M, Lauss M, Hadrup SR, Schmidt H, Andersen MH, Thor Straten P, Nilsson JA, Schumacher TN, Seliger B, Jonsson G, Svane IM (2017) Acquired immune resistance follows complete tumor regression without loss of target antigens or IFNgamma signaling. Cancer Res 77(17):4562–4566. https://doi.org/10.1158/0008-5472.CAN-16-3172

    Article  PubMed  CAS  Google Scholar 

  50. Srivastava RM, Trivedi S, Concha-Benavente F, Hyun-Bae J, Wang L, Seethala RR, Branstetter BF, Ferrone S, Ferris RL (2015) STAT1-induced HLA class I upregulation enhances immunogenicity and clinical response to Anti-EGFR mAb cetuximab therapy in HNC patients. Cancer Immunol Res 3(8):936–945. https://doi.org/10.1158/2326-6066.CIR-15-0053

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Martin JD, Fukumura D, Duda DG, Boucher Y, Jain RK (2016) Reengineering the tumor microenvironment to alleviate hypoxia and overcome cancer heterogeneity. Cold Spring Harb Perspect Med. https://doi.org/10.1101/cshperspect.a027094

    Article  PubMed  PubMed Central  Google Scholar 

  52. Semenza GL (2016) The hypoxic tumor microenvironment: a driving force for breast cancer progression. Biochim Biophys Acta 1863(3):382–391. https://doi.org/10.1016/j.bbamcr.2015.05.036

    Article  PubMed  CAS  Google Scholar 

  53. Kamarashev J, Ferrone S, Seifert B, Boni R, Nestle FO, Burg G, Dummer R (2001) TAP1 downregulation in primary melanoma lesions: an independent marker of poor prognosis. Int J Cancer 95(1):23–28

    Article  PubMed  CAS  Google Scholar 

  54. Peng RQ, Chen YB, Ding Y, Zhang R, Zhang X, Yu XJ, Zhou ZW, Zeng YX, Zhang XS (2010) Expression of calreticulin is associated with infiltration of T-cells in stage IIIB colon cancer. World J Gastroenterol 16(19):2428–2434

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Sokol L, Koelzer VH, Rau TT, Karamitopoulou E, Zlobec I, Lugli A (2015) Loss of tapasin correlates with diminished CD8(+) T-cell immunity and prognosis in colorectal cancer. J Transl Med 13:279. https://doi.org/10.1186/s12967-015-0647-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Ogino T, Shigyo H, Ishii H, Katayama A, Miyokawa N, Harabuchi Y, Ferrone S (2006) HLA class I antigen downregulation in primary laryngeal squamous cell carcinoma lesions as a poor prognostic marker. Cancer Res 66(18):9281–9289. https://doi.org/10.1158/0008-5472.CAN-06-0488

    Article  PubMed  CAS  Google Scholar 

  57. Ogino T, Bandoh N, Hayashi T, Miyokawa N, Harabuchi Y, Ferrone S (2003) Association of tapasin and HLA class I antigen downregulation in primary maxillary sinus squamous cell carcinoma lesions with reduced survival of patients. Clin Cancer Res 9(11):4043–4051

    PubMed  CAS  Google Scholar 

  58. Weinman EC, Roche PC, Kasperbauer JL, Cha SS, Sargent DJ, Cheville J, Murphy LM, Chen L, Wettstein PJ, Gostout B, Ferrone S, Strome SE (2003) Characterization of antigen processing machinery and survivin expression in tonsillar squamous cell carcinoma. Cancer 97(9):2203–2211. https://doi.org/10.1002/cncr.11311

    Article  PubMed  Google Scholar 

  59. Bandoh N, Ogino T, Katayama A, Takahara M, Katada A, Hayashi T, Harabuchi Y (2010) HLA class I antigen and transporter associated with antigen processing downregulation in metastatic lesions of head and neck squamous cell carcinoma as a marker of poor prognosis. Oncol Rep 23(4):933–939

    Article  PubMed  CAS  Google Scholar 

  60. Hosch SB, Meyer AJ, Schneider C, Stoecklein N, Prenzel KL, Pantel K, Broelsch CE, Izbicki JR (1997) Expression and prognostic significance of HLA class I, ICAM-1, and tumor-infiltrating lymphocytes in esophageal cancer. J Gastrointest Surg 1(4):316–323

    Article  PubMed  CAS  Google Scholar 

  61. Hosch SB, Izbicki JR, Pichlmeier U, Stoecklein N, Niendorf A, Knoefel WT, Broelsch CE, Pantel K (1997) Expression and prognostic significance of immunoregulatory molecules in esophageal cancer. Int J Cancer 74(6):582–587

    Article  PubMed  CAS  Google Scholar 

  62. Mizukami Y, Kono K, Maruyama T, Watanabe M, Kawaguchi Y, Kamimura K, Fujii H (2008) Downregulation of HLA Class I molecules in the tumour is associated with a poor prognosis in patients with oesophageal squamous cell carcinoma. Br J Cancer 99(9):1462–1467. https://doi.org/10.1038/sj.bjc.6604715

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Tanaka K, Tsuchikawa T, Miyamoto M, Maki T, Ichinokawa M, Kubota KC, Shichinohe T, Hirano S, Ferrone S, Dosaka-Akita H, Matsuno Y, Kondo S (2012) Downregulation of human leukocyte antigen class I heavy chain in tumors is associated with a poor prognosis in advanced esophageal cancer patients. Int J Oncol 40(4):965–974. https://doi.org/10.3892/ijo.2011.1274

    Article  PubMed  CAS  Google Scholar 

  64. Zhang X, Lin A, Zhang JG, Bao WG, Xu DP, Ruan YY, Yan WH (2013) Alteration of HLA-F and HLA I antigen expression in the tumor is associated with survival in patients with esophageal squamous cell carcinoma. Int J Cancer 132(1):82–89. https://doi.org/10.1002/ijc.27621

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This study was supported by National Cancer Institute (NCI) R21 (Grant no. CA164756), National Natural Science Foundation of China (Grant no. 81201948) and National Foundation of Chongqing (Grant No. cstc2012jjA10026).

Author information

Authors and Affiliations

Authors

Contributions

All co-authors conceived, wrote and edited the manuscript.

Corresponding author

Correspondence to Soldano Ferrone.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

This paper is a Focussed Research Review based on a presentation given at the Fourteenth Meeting of the Network Italiano per la Bioterapia dei Tumori (NIBIT) on Cancer Bio-Immunotherapy, held in Siena, Italy, 13th–15th October 2016. It is part of a series of Focussed Research Reviews and meeting report in Cancer Immunology, Immunotherapy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, L., Michelakos, T., Yamada, T. et al. Defective HLA class I antigen processing machinery in cancer. Cancer Immunol Immunother 67, 999–1009 (2018). https://doi.org/10.1007/s00262-018-2131-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-018-2131-2

Keywords

Navigation