Skip to main content
Log in

13N-ammonia myocardial perfusion imaging with a PET/CT scanner: impact on clinical decision making and cost-effectiveness

  • Original article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The purpose of the study is to determine the impact of 13N-ammonia positron emission tomography (PET) myocardial perfusion imaging (MPI) on clinical decision making and its cost-effectiveness.

Materials and methods

One hundred consecutive patients (28 women, 72 men; mean age 60.9 ± 12.0 years; range 24-85 years) underwent 13N-ammonia PET scanning (and computed tomography, used only for attenuation correction) to assess myocardial perfusion in patients with known (n = 79) or suspected (n = 8) coronary artery disease (CAD), or for suspected small-vessel disease (SVD; n = 13). Before PET, the referring physician was asked to determine patient treatment if PET would not be available. Four weeks later, PET patient management was reassessed for each patient individually.

Results

Before PET management strategies would have been: diagnostic angiography (62 of 100 patients), diagnostic angiography and percutaneous coronary intervention (PCI; 6 of 100), coronary artery bypass grafting (CABG; 3 of 100), transplantation (1 of 100), or conservative medical treatment (28 of 100). After PET scanning, treatment strategies were altered in 78 patients leading to: diagnostic angiography (0 of 100), PCI (20 of 100), CABG (3 of 100), transplantation (1 of 100), or conservative medical treatment (76 of 100). Patient management followed the recommendations of PET findings in 97% of the cases. Cost-effectiveness analysis revealed lower costs of €206/patient as a result of PET scanning.

Conclusion

In a population with a high prevalence of known CAD, PET is cost-effective and has an important impact on patient management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Topol EJ, Nissen SE. Our preoccupation with coronary luminology. The dissociation between clinical and angiographic findings in ischemic heart disease. Circulation 1995;92:2333-42.

    Article  CAS  PubMed  Google Scholar 

  2. Schelbert HR, Wisenberg G, Phelps ME, Gould KL, Henze E, Hoffman EJ, et al. Noninvasive assessment of coronary stenoses by myocardial imaging during pharmacologic coronary vasodilation. VI. Detection of coronary artery disease in human beings with intravenous N-13 ammonia and positron computed tomography. Am J Cardiol 1982;49:1197-207.

    Article  CAS  PubMed  Google Scholar 

  3. Gould KL, Kelley KO, Bolson EL. Experimental validation of quantitative coronary arteriography for determining pressure-flow characteristics of coronary stenosis. Circulation 1982;66:930-7.

    Article  CAS  PubMed  Google Scholar 

  4. Miller DD, Donohue TJ, Younis LT, Bach RG, Aguirre FV, Wittry MD, et al. Correlation of pharmacological 99mTc-sestamibi myocardial perfusion imaging with poststenotic coronary flow reserve in patients with angiographically intermediate coronary artery stenoses. Circulation 1994;89:2150-60.

    Article  CAS  PubMed  Google Scholar 

  5. Zijlstra F, Fioretti P, Reiber JH, Serruys PW. Which cineangiographically assessed anatomic variable correlates best with functional measurements of stenosis severity? A comparison of quantitative analysis of the coronary cineangiogram with measured coronary flow reserve and exercise/redistribution thallium-201 scintigraphy. J Am Coll Cardiol 1988;12:686-91.

    Article  CAS  PubMed  Google Scholar 

  6. Hutchins GD, Schwaiger M, Rosenspire KC, Krivokapich J, Schelbert H, Kuhl DE. Noninvasive quantification of regional blood flow in the human heart using N-13 ammonia and dynamic positron emission tomographic imaging. J Am Coll Cardiol 1990;15:1032-42.

    Article  CAS  PubMed  Google Scholar 

  7. Bergmann SR, Herrero P, Markham J, Weinheimer CJ, Walsh MN. Noninvasive quantitation of myocardial blood flow in human subjects with oxygen-15-labeled water and positron emission tomography. J Am Coll Cardiol 1989;14:639-52.

    Article  CAS  PubMed  Google Scholar 

  8. Araujo LI, Lammertsma AA, Rhodes CG, McFalls EO, Iida H, Rechavia E, et al. Noninvasive quantification of regional myocardial blood flow in coronary artery disease with oxygen-15-labeled carbon dioxide inhalation and positron emission tomography. Circulation 1991;83:875-85.

    Article  CAS  PubMed  Google Scholar 

  9. Hesse B, Tagil K, Cuocolo A, Anagnostopoulos C, Bardies M, Bax J, et al. EANM/ESC procedural guidelines for myocardial perfusion imaging in nuclear cardiology. Eur J Nucl Med Mol Imaging 2005;32:855-97.

    Article  CAS  PubMed  Google Scholar 

  10. Gould KL. Clinical cardiac positron emission tomography: State of the Art. Circulation 1991;84(Suppl I):I-22-I-36.

    CAS  Google Scholar 

  11. Klocke FJ, Baird MG, Lorell BH, Bateman TM, Messer JV, Berman DS, et al. ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging—executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to Revise the 1995 Guidelines for the Clinical Use of Cardiac Radionuclide Imaging). J Am Coll Cardiol 2003;42:1318-33.

    Article  PubMed  Google Scholar 

  12. Stewart RE, Schwaiger M, Molina E, Popma J, Gacioch GM, Kalus M, et al. Comparison of rubidium-82 positron emission tomography and thallium-201 SPECT imaging for detection of coronary artery disease. Am J Cardiol 1991;67:1303-10.

    Article  CAS  PubMed  Google Scholar 

  13. Tamaki N, Yonekura Y, Senda M, Yamashita K, Koide H, Saji H, et al. Value and limitation of stress thallium-201 single photon emission computed tomography: comparison with nitrogen-13 ammonia positron tomography. J Nucl Med 1988;29:1181-8.

    CAS  PubMed  Google Scholar 

  14. Go RT, Marwick TH, MacIntyre WJ, Saha GB, Neumann DR, Underwood DA, et al. A prospective comparison of rubidium-82 PET and thallium-201 SPECT myocardial perfusion imaging utilizing a single dipyridamole stress in the diagnosis of coronary artery disease. J Nucl Med 1990;31:1899-905.

    CAS  PubMed  Google Scholar 

  15. Camici PG, Marraccini P, Lorenzoni R, Buzzigoli G, Pecori N, Perissinotto A, et al. Coronary hemodynamics and myocardial metabolism in patients with syndrome X: response to pacing stress. J Am Coll Cardiol 1991;17:1461-70.

    Article  CAS  PubMed  Google Scholar 

  16. Rosen SD, Uren NG, Kaski JC, Tousoulis D, Davies GJ, Camici PG. Coronary vasodilator reserve, pain perception, and sex in patients with syndrome X. Circulation 1994;90:50-60.

    Article  CAS  PubMed  Google Scholar 

  17. Epstein SE, Cannon RO 3rd. Site of increased resistance to coronary flow in patients with angina pectoris and normal epicardial coronary arteries. J Am Coll Cardiol 1986;8:459-61.

    Article  CAS  PubMed  Google Scholar 

  18. Koepfli P, Wyss CA, Namdar M, Klainguti M, von Schulthess GK, Luscher TF, et al. Beta-adrenergic blockade and myocardial perfusion in coronary artery disease: differential effects in stenotic versus remote myocardial segments. J Nucl Med 2004;45:1626-31.

    CAS  PubMed  Google Scholar 

  19. Cerqueira MD, Verani MS, Schwaiger M, Heo J, Iskandrian AS. Safety profile of adenosine stress perfusion imaging: results from the Adenoscan Multicenter Trial Registry. J Am Coll Cardiol 1994;23:384-9.

    Article  CAS  PubMed  Google Scholar 

  20. Margonato A, Chierchia SL, Xuereb RG, Xuereb M, Fragasso G, Cappelletti A, et al. Specificity and sensitivity of exercise-induced ST segment elevation for detection of residual viability: comparison with fluorodeoxyglucose and positron emission tomography. J Am Coll Cardiol 1995;25:1032-8.

    Article  CAS  PubMed  Google Scholar 

  21. Muzik O, Beanlands RS, Hutchins GD, Mangner TJ, Nguyen N, Schwaiger M. Validation of nitrogen-13-ammonia tracer kinetic model for quantification of myocardial blood flow using PET. J Nucl Med 1993;34:83-91.

    CAS  PubMed  Google Scholar 

  22. Jorg-Ciopor M, Namdar M, Turina J, Jenni R, Schwitter J, Turina M, et al. Regional myocardial ischemia in hypertrophic cardiomyopathy: impact of myectomy. J Thorac Cardiovasc Surg 2004;128:163-9.

    Article  PubMed  Google Scholar 

  23. Beanlands RS, deKemp RA, Smith S, Johansen H, Ruddy TD. F-18-fluorodeoxyglucose PET imaging alters clinical decision making in patients with impaired ventricular function. Am J Cardiol 1997;79:1092-5.

    Article  CAS  PubMed  Google Scholar 

  24. Felix RC, Correa PL, de Azevedo JC, Dohmann HF, Mesquita ET, Mesquita CT. Clinical impact of positron emission tomography by coincidence system with 18F-FDG on therapeutic decision-making of patients with ischemic cardiomyopathy after myocardial infarction. Arq Bras Cardiol 2006;86:337-45.

    Article  PubMed  Google Scholar 

  25. Bateman TM, O’Keefe JH Jr., Dong VM, Barnhart C, Ligon RW. Coronary angiographic rates after stress single-photon emission computed tomographic scintigraphy. J Nucl Cardiol 1995;2:217-23.

    Article  CAS  PubMed  Google Scholar 

  26. Nallamothu N, Pancholy SB, Lee KR, Heo J, Iskandrian AS. Impact on exercise single-photon emission computed tomographic thallium imaging on patient management and outcome. J Nucl Cardiol 1995;2:334-8.

    Article  CAS  PubMed  Google Scholar 

  27. Shaw LJ, Hachamovitch R, Berman DS, Marwick TH, Lauer MS, Heller GV, et al. The economic consequences of available diagnostic and prognostic strategies for the evaluation of stable angina patients: an observational assessment of the value of precatherization ischemia. Economics of Noninvasive Diagnosis (END) Multicenter Study Group. J Am Coll Cardiol 1999;33:661-9.

    Article  CAS  PubMed  Google Scholar 

  28. Merhige ME, Breen WJ, Shelton V, Houston T, D’Arcy BJ, Perna AF. Impact of myocardial perfusion imaging with PET and (82)Rb on downstream invasive procedure utilization, costs, and outcomes in coronary disease management. J Nucl Med 2007;48:1069-76.

    Article  PubMed  Google Scholar 

  29. Camici PG, Crea F. Coronary microvascular dysfunction. N Engl J Med 2007;356:830-40.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the Swiss National Science Foundation (SNSF-professorship grant no. PP00A-114706) and by a grant of the National Center of Competence in Research, Computer Aided and Image Guided Medical Interventions (NCCR CO-ME) of the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp A. Kaufmann.

Additional information

P.T. Siegrist and L. Husmann contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siegrist, P.T., Husmann, L., Knabenhans, M. et al. 13N-ammonia myocardial perfusion imaging with a PET/CT scanner: impact on clinical decision making and cost-effectiveness. Eur J Nucl Med Mol Imaging 35, 889–895 (2008). https://doi.org/10.1007/s00259-007-0647-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-007-0647-3

Keywords

Navigation