Skip to main content
Log in

Molecular phylogeography and population genetic structure of the planktonic copepod Calanus sinicus Brodsky in the coastal waters of China

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

Planktonic copepod Calanus sinicus is the dominant meso-zooplankton in the Northwest Pacific Ocean. To better understand its population dynamics and phylogeographic patterns, 243 C. sinicus individuals were collected from seven locations across the shelf waters of China and its population genetics was studied by mitochondrial DNA cytochrome oxidase I (mtCOI) sequences analyses. Thirty-nine different sequences, or haplotypes, were detected with moderate haplotype diversity (h=0.749) and low nucleotide diversity (π=0.003) for all populations. The evolutionary divergence between geographic populations varied from 0.24% to 0.37%, indicative of very limited genetic differentiation. Visualized minimum spanning network (MSN) and phylogenetic analysis of all the detected haplotypes did not reveal any clear phylogeographic pattern. Furthermore, AMOVA data showed no significant spatial population differentiation existed among the individuals collected across China shelf waters. Pairwise F ST values showed that population collected from northwest of the East China Sea (ECS) displayed a low difference to other populations. Mismatch distribution analyses and neutrality tests indicated that C. sinicus might undergo a demographic/population expansion. No significant population genetic structuring was detected, indicating an extensive gene flow among the C. sinicus populations. Our results provide molecular evidence for the hypothesis that C. sinicus in the northwestern South China Sea in winter is transported from the East China Sea and the Yellow Sea by the China Coastal Current during the northeast monsoon period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asahida T, Yamashita Y, Kobayashi T. 1997. Identification of consumed stone flounder, Kareius bicoloratus (Basilewsky), from the stomach contents of sand shrimp, Crangon affinis (De Haan) using mitochondrial DNA analysis. Journal of Experimental Marine Biology and Ecology, 217(2): 153–163

    Article  Google Scholar 

  • Atkinson D. 1994. Temperature and organism size-a biological law for ectotherms? Advances in Ecological Research, 25: 1–58

    Article  Google Scholar 

  • Avise J C. 2000. Phylogeography: the History and Formation of Species. Cambridge: Harvard University Press

    Google Scholar 

  • Avise J C. 2009. Phylogeography: retrospect and prospect. Journal of Biogeography, 36(1): 3–15

    Article  Google Scholar 

  • Bi Hongsheng, Sun Song, Gao Shangwu, et al. 2001. The ecological characteristics of zooplankton community in the Bohai Sea: II. The distribution of copepoda abundance and seasonal dynamics. Acta Ecologica Sinica (in Chinese), 21(2): 177–185

    Google Scholar 

  • Blanco-Bercial L, lvarez-Marqués F, Bucklin A. 2011. Comparative phylogeography and connectivity of sibling species of the marine copepod Clausocalanus (Calanoida). Journal of Experimental Marine Biology and Ecology, 404(1–2): 108–115

    Article  Google Scholar 

  • Boore J L. 1999. Animal mitochondrial genomes. Nucleic Acids Research, 27(8): 1767–1780

    Article  Google Scholar 

  • Boore J L, Fuerstenberg S I. 2008. Beyond linear sequence comparisons: the use of genome-level characters for phylogenetic reconstruction. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1496): 1445–1451

    Article  Google Scholar 

  • Bradford J M. 1988. Review of the taxonomy of the Calanidae (Copepoda) and the limits to the genus Calanus. Hydrobiologia, 167–168(1): 73–81

    Article  Google Scholar 

  • Bucklin A, Astthorsson O S, Gislason A, et al. 2000. Population genetic variation of Calanus finmarchicus in Icelandic waters: preliminary evidence of genetic differences between Atlantic and Arctic populations. ICES Journal of Marine Science, 57(6): 1592–1604

    Article  Google Scholar 

  • Bucklin A, Frost B W, Bradford-Grieve J, et al. 2003. Molecular systematic and phylogenetic assessment of 34 calanoid copepod species of the Calanidae and Clausocalanidae. Marine Biology, 142(2): 333–343

    Google Scholar 

  • Bucklin A, Wiebe P H. 1998. Low mitochondrial diversity and small effective population sizes of the copepods Calanus finmarchicus and Nannocalanus minor: possible impact of climatic variation during recent glaciation. Journal of Heredity, 89(5): 383–392

    Article  Google Scholar 

  • Burton R S, Byrne R J, Rawson P D. 2007. Three divergent mitochondrial genomes from California populations of the copepod Tigriopus californicus. Gene, 403(1–2): 53–59

    Article  Google Scholar 

  • Cao Wenqing, Lin Yuanshao, Yang Qing, et al. 2006. Advanced in biology of Calanus sinicus in China. Journal of Xiamen University (Natural Science) (in Chinese), 45: 54–61

    Google Scholar 

  • Chen Gang, Hare M P. 2011. Cryptic diversity and comparative phylogeography of the estuarine copepod Acartia tonsa on the US Atlantic coast. Molecular Ecology, 20(11): 2425–2441

    Article  Google Scholar 

  • Chen Hongju, Qi Yanping, Liu Guangxing. 2011. Spatial and temporal variations of macro- and mesozooplankton community in the Huanghai Sea (Yellow Sea) and East China Sea in summer and winter. Acta Oceanologica Sinica, 30(2): 84–95

    Article  Google Scholar 

  • Chen Qingchao. 1964. A study of the breeding periods, variation in sex ratio and in size of Calanus sinicus Brodsky. Oceanologia et Limnologia Sinica (in Chinese), 6(3): 272–288

    Google Scholar 

  • Chen Qingchao, Zhang Shuzhen. 1965. The planktonic copepods of the Yellow Sea and the East China Sea: I. Calanoida. Studia Marina Sinica (in Chinese), 7: 1–131

    Google Scholar 

  • Chen Qingchao. 1992. Zooplankton of China Seas. Beijing: Science Press, 243–254

    Google Scholar 

  • Excoffier L, Laval G, Schneider S. 2005. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 1: 47–50

    Google Scholar 

  • Excoffier L, Smouse P E, Quattro J M. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics, 131(2): 479–491

    Google Scholar 

  • Folmer O, Black M, Hoeh W, et al. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3(5): 294–299

    Google Scholar 

  • Forster J, Hirst A G, Atkinson D. 2012. Warming-induced reductions in body size are greater in aquatic than terrestrial species. Proceedings of the National Academy of Sciences of the United States of America, 109(47): 19310–19314

    Article  Google Scholar 

  • Han Xifu, Wang Rong, Wang Junping. 2002. Digestive gut structure and activity of protease, amylase, and alkaline phosphatase in Calanus sinicus during summer in the Yellow Sea and the East China Sea. Journal of Experimental Marine Biology and Ecology, 270(2): 131–146

    Article  Google Scholar 

  • Hirota R. 1964. Zooplankton investigations in Hiuchi-nada in the Setonaikai (Inland Sea of Japan): I. The seasonal occurrence of copepods at the three stations in Hiuchi-nada. Journal of the Oceanographical Society of Japan, 20: 24–31

    Google Scholar 

  • Hirota R. 1979. Seasonal occurrence of zooplankton at a definite station off Mukaishima from July of 1976 to June of 1977. Publications from the Amakusa Marine Biological Laboratory, 5: 9–17

    Google Scholar 

  • Hsieh C H, Chen C S, Chiu T S. 2005. Composition and abundance of copepods and ichthyoplankton in Taiwan Strait (western North Pacific) are influenced by seasonal monsoons. Marine and Freshwater Research, 56(2): 153–161

    Article  Google Scholar 

  • Huang C, Uye S, Onbé T. 1993a. Geographic distribution, seasonal life cycle, biomass and production of a planktonic copepod Calanus sinicus in the Inland Sea of Japan and its neighboring Pacific Ocean. Journal of Plankton Research, 15(11): 1229–1246

    Article  Google Scholar 

  • Huang C, Uye S, Onbé T. 1993b. Ontogenetic diel vertical migration of the planktonic copepod Calanus sinicus in the Inland Sea of Japan: III. Early summer and overall seasonal pattern. Marine Biology, 117(2): 289–299

    Article  Google Scholar 

  • Hulsemann K. 1994. Calanus sinicus Brodsky and C. jashnovi, nom. nov. (Copepoda: Calanoida) of the North-west Pacific Ocean: A comparison, with notes on the integumental pore pattern in Calanus s. str. Invertebrate Taxonomy, 8: 1461–1482

    Article  Google Scholar 

  • Huo Yuanzi, Wang Shiwei, Sun Song, et al. 2008. Feeding and egg production of the planktonic copepod Calanus sinicus in spring and autumn in the Yellow Sea, China. Journal of Plankton Research, 30(6): 723–734

    Article  Google Scholar 

  • Hwang J S, Wong C K. 2005. The China Coastal Current as a driving force for transporting Calanus sinicus (Copepoda: Calanoida) from its population centers to waters off Taiwan and Hong Kong during the winter northeast monsoon period. Journal of Plankton Research, 27(2): 205–210

    Article  Google Scholar 

  • Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2): 111–120

    Article  Google Scholar 

  • Knowlton N. 2000. Molecular genetic analyses of species boundaries in the sea. Hydrobiologia, 420(1): 73–90

    Article  Google Scholar 

  • Kozol R, Blanco-Bercial L, Bucklin A. 2012. Multi-gene analysis reveals a lack of genetic divergence between Calanus agulhensis and Calanus sinicus (Copepoda; Calanoida). PLoS ONE, 7(10): e45710

    Article  Google Scholar 

  • Kumar S, Nei M, Dudley J, et al. 2008. MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Briefings in Bioinformatics, 9(4): 299–306

    Article  Google Scholar 

  • Larkin M A, Blackshields G, Brown N P, et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics, 23(21): 2947–2948

    Article  Google Scholar 

  • Lee C E. 2000. Global phylogeography of a cryptic copepod species complex and reproductive isolation between genetically proximate “populations”. Evolution, 54(6): 2014–2027

    Article  Google Scholar 

  • Lee H J, Chao S Y, 2003. A climatological description of circulation in and around the East China Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 50(6–7): 1065–1084

    Article  Google Scholar 

  • Li Chaolun, Sun Song, Wang Rong, et al. 2004. Feeding and respiration rates of a planktonic copepod (Calanus sinicus) oversummering in Yellow Sea Cold Bottom Waters. Marine Biology, 145(1): 149–157

    Article  Google Scholar 

  • Li Jie, Sun Song, Li Chaolun, et al. 2006. Effects of single and mixed diatom diets on the reproduction of copepod Calanus sinicus. Acta Hydrochimica Et Hydrobiologica, 34(1–2): 117–125

    Article  Google Scholar 

  • Li Naisheng, Zhao Songling, Wasiliev B. 2000. Geology of Marginal Sea in the Northwest Pacific (in Chinese). Harbin: Heilongjiang Education Press

    Google Scholar 

  • Lin Yuanshao, Fang Lüping, Cao Wenqing, et al. 2005. Mitochodrial DNA COI sequence analysis of Calanus sinicus (Copepod) in Qingdao waters. Journal of Xiamen University (Natural Science) (in Chinese), 44(1): 90–93

    Google Scholar 

  • Liu Jinxian, Gao Tianxiang, Wu Shifang, et al. 2007. Pleistocene isolation in the Northwestern Pacific marginal seas and limited dispersal in a marine fish, Chelon haematocheilus (Temminck & Schlegel, 1845). Molecular Ecology, 16(2): 275–288

    Article  Google Scholar 

  • Meng Tianxiang. 2003. Studies on the feeding of anchovy (Engraulis japonicus) at different life stages on zooplankton in the Middle and Southern Waters of the Yellow Sea. Marine Fisheries Research (in Chinese), 24(3): 1–9

    Google Scholar 

  • Milligan P J, Stahl E A, Schizas N V, et al. 2011. Phylogeography of the copepod Acartia hudsonica in estuaries of the northeastern United States. Hydrobiologia, 666(1): 155–165

    Article  Google Scholar 

  • Nei M. 1987. Molecular Evolutionary Genetics. New York: Columbia University Press, 1–448

    Google Scholar 

  • Nelson R J, Carmack E C, Mclaughlin F A, et al. 2009. Penetration of Pacific zooplankton into the western Arctic Ocean tracked with molecular population genetics. Marine Ecology Progress Series, 381: 129–138

    Article  Google Scholar 

  • Nonomura T, Machida R J, Nishida S. 2008. Stage-V copepodites of Calanus sinicus and Calanus jashnovi (Copepoda: Calanoida) in mesopelagic zone of Sagami Bay as identified with genetic markers, with special reference to their vertical distribution. Progress in Oceanography, 77(1): 45–55

    Article  Google Scholar 

  • Nuwer M L, Frost B W, Armbrust E V. 2008. Population structure of the planktonic copepod Calanus pacificus in the North Pacific Ocean. Marine Biology, 156(2): 107–115

    Article  Google Scholar 

  • Papadopoulos L N, Peijnenburg K T C A, Luttikhuizen P C. 2005. Phylogeography of the calanoid copepods Calanus helgolandicus and C. euxinus suggests Pleistocene divergences between Atlantic, Mediterranean, and Black Sea populations. Marine Biology, 147(6): 1353–1365

    Article  Google Scholar 

  • Posada D. 2008. jModelTest: phylogenetic model averaging. Molecular Biology and Evolution, 25(1): 1253–1256

    Article  Google Scholar 

  • Provan J, Beatty G E, Keating S L, et al. 2009. High dispersal potential has maintained long-term population stability in the North Atlantic copepod Calanus finmarchicus. Proceedings of the Royal Society B: Biological Sciences, 276(1655): 301–307

    Article  Google Scholar 

  • Pu Xinming, Sun Song, Yang Bo, et al. 2004. Life history strategies of Calanus sinicus in the southern Yellow Sea in summer. Journal of Plankton Research, 26(9): 1059–1068

    Article  Google Scholar 

  • Rohlf F J. 1973. Algorithm 76. Hierarchical clustering using the minimum spanning tree. Computer Journal, 16: 93–95

    Google Scholar 

  • Shui Bonian, Han Zhiqiang, Gao Tianxiang, et al. 2009. Mitochondrial DNA variation in the East China Sea and Yellow Sea populations of Japanese Spanish mackerel Scomberomorus niphonius. Fisheries Science, 75(3): 593–600

    Article  Google Scholar 

  • Tajima F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123(3): 585–595

    Google Scholar 

  • Tan Shuhui, Lin Yuanshao, Cao Wenqing, et al. 2003. Studies on population genetics of Calanus sinicus (Copepod) in Yellow Sea and the East China Sea: I. Allozyme analysis. Journal of Xiamen Uiniversity (Natural Science) (in Chinese), 42(1): 87–91

    Google Scholar 

  • Uye S. 1988. Temperature-dependent development and growth of Calanus sinicus (Copepoda: Calanoida) in the laboratory. Hydrobiologia, 167–168(1): 285–293

    Article  Google Scholar 

  • Uye S. 2000. Why does Calanus sinicus prosper in the shelf ecosystem of the Northwest Pacific Ocean? ICES Journal of Marine Science, 57: 1850–1855

    Article  Google Scholar 

  • Uye S, Huang C, Onbe T. 1990. Ontogenetic diel vertical migration of the planktonic copepod Calanus sinicus in the Inland Sea of Japan. Marine Biology, 104(3): 389–396

    Article  Google Scholar 

  • Wang Minxiao. 2010. Application of molecular markers to the researches on pelagic copepods in the Chinese coastal regions [dissertation]. Beijing: Chinese Academy of Sciences

    Google Scholar 

  • Wang Minxiao, Sun Song, Li Chaolun, et al. 2011. Distinctive mitochondrial genome of Calanoid copepod Calanus sinicus with multiple large non-coding regions and reshuffled gene order: Useful molecular markers for phylogenetic and population studies. BMC Genomics, 12: 73, doi: 10.1186/1471-2164-12-73

    Article  Google Scholar 

  • Wang Pinxian. 1999. Response of Western Pacific marginal seas to glacial cycles: paleoceanographic and sedimentological features. Marine Geology, 156(1–4): 5–39

    Article  Google Scholar 

  • Wang Rong, Zuo Tao, Wang Ke. 2003. The Yellow Sea Cold Bottom Water: An over-summering site for Calanus sinicus (Copepoda, Crustacea). Journal of Plankton Research, 25(2): 169–183

    Article  Google Scholar 

  • Wang Shiwei, Li Chaolun, Sun Song, et al. 2009. Spring and autumn reproduction of Calanus sinicus in the Yellow Sea. Marine Ecology Progress Series, 379: 123–133

    Article  Google Scholar 

  • Xu Xuedong, Oda M. 1999. Surface-water evolution of the eastern East China Sea during the last 36,000 years. Marine Geology, 156(1–4): 285–304

    Article  Google Scholar 

  • Xu Zhaoli, Chen Bijuan. 2007. Seasonal distribution of Calanus sinicus (Copepoda, crustacea) in the East China Sea. Acta Oceanologica Sinica, 26(3): 150–159

    Google Scholar 

  • Xu Zhaoli, Ma Zhengling, Wu Yumei. 2011. Peaked abundance of Calanus sinicus earlier shifted in the Changjiang River (Yangtze River) Estuary: a comparable study between 1959, 2002 and 2005. Acta Oceanologica Sinica, 30(3): 84–91

    Article  Google Scholar 

  • Yin Jianqiang, Huang Liangmin, Li Kaizhi, et al. 2011. Abundance distribution and seasonal variations of Calanus sinicus (Copepoda: Calanoida) in the northwest continental shelf of South China Sea. Continental Shelf Research, 31(14): 1447–1456

    Article  Google Scholar 

  • Yoshida T, Toda T, Kuwahara V, et al. 2004. Rapid response to changing light environments of the calanoid copepod Calanus sinicus. Marine Biology, 145(3): 505–513

    Article  Google Scholar 

  • Yoshiki T, Yamanoha B, Kikuchi T, et al. 2008. Hydrostatic pressure-induced apoptosis on nauplii of Calanus sinicus. Marine Biology, 156(2): 97–106

    Article  Google Scholar 

  • Zhang Guangtao, Li Chaolun, Sun Song, et al. 2006. Feeding habits of Calanus sinicus (Crustacea: Copepoda) during spring and autumn in the Bohai Sea studied with the herbivore index. Scientia Marina, 70(3): 381–388

    Article  Google Scholar 

  • Zhang Wuchang, Tang Danling, Yang Bo, et al. 2009. Onshore-offshore variations of copepod community in northern South China Sea. Hydrobiologia, 636(1): 257–269

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangxing Liu.

Additional information

Foundation item: The National Natural Science Foundation of China under contract Nos 40876066 and 41076085; the National Basic Research Program of China under contract No. 2005CB422306.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Liu, G. & Chen, X. Molecular phylogeography and population genetic structure of the planktonic copepod Calanus sinicus Brodsky in the coastal waters of China. Acta Oceanol. Sin. 33, 74–84 (2014). https://doi.org/10.1007/s13131-014-0542-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-014-0542-2

Key words

Navigation