Skip to main content
Log in

Evolution of genitalia: theories, evidence, and new directions

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Many hypotheses have been proposed to explain why male intromittent genitalia consistently tend to diverge more rapidly than other body traits of the same individuals in a wide range of animal taxa. Currently the two most popular involve sexual selection: sexually antagonistic coevolution (SAC) and cryptic female choice (CFC). A review of the most extensive attempts to discriminate between these two hypotheses indicates that SAC is not likely to have played a major role in explaining this pattern of genital evolution. Promising lines for future, more direct tests of CFC include experimental modification of male genital form and female sensory abilities, analysis of possible male–female dialogues during copulation, and direct observations of genital behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alexander RD, Marshall DC, Cooley JR (1997) Evolutionary perspectives on insect mating. In: Choe JC, Crespi BJ (eds) The evolution of mating systems in insects and arachnids. Cambridge University Press, Cambridge, pp 4–31

    Google Scholar 

  • Amsel HG, Gregor F, Reisser H (eds) (1965–2000) Microlepidoptera Palaearctica. Goerg Fromme, Vienna

    Google Scholar 

  • Arnqvist G (1998) Comparative evidence for the evolution of genitalia by sexual selection. Nature 393:784–786

    CAS  Google Scholar 

  • Arnqvist G (2004) Sexual conflict and sexual selection: lost in the chase. Evol Int J Org Evol 58:1383–1388

    Google Scholar 

  • Arnqvist G (2006) Sensory exploitation and sexual conflict. Philos Trans R Soc B 361:375–386. doi:10.1098/rstb.2005.1790

    Google Scholar 

  • Arnqvist G, Danielsson I (1999) Copulatory behavior, genital morphology, and male fertilization success in water striders. Evol Int J Org Evol 53:147–156. doi:10.2307/2640927

    Google Scholar 

  • Arnqvist G, Rowe L (2002a) Antagonistic coevolution between the sexes in a group of insects. Nature 415:787–789

    CAS  PubMed  Google Scholar 

  • Arnqvist G, Rowe L (2002b) Correlated evolution of male and female morphologies in water striders. Evol Int J Org Evol 56:936–947

    Google Scholar 

  • Arnqvist G, Rowe L (2005) Sexual conflict. Princeton University Press, Princeton

    Google Scholar 

  • Aubertin D (1933) Revision of the genus Lucilia R.-D. (Diptera, Calliphoridae). Linn J Zool 38:389–436

    Google Scholar 

  • Baena ML, Eberhard WG (2007) Appearances deceive: female “resistance” behaviour in a sepsid fly is not a test of the male’s ability to hold on. Ethol Ecol Evol 19:27–50

    Google Scholar 

  • Battin TJ (1993) The odonate mating system, communication, and sexual selection. Boll Zool 60:353–360

    Google Scholar 

  • Birkhead T (1996) In it for the eggs. Nature 383:772. doi:10.1038/382772a0

    Google Scholar 

  • Briceño RD, Eberhard WG (2009) Experimental modifications of male genitalia support cryptic female choice hypothesis for genital evolution. Proc Natl Acad Sci USA (submitted)

  • Briceño RD, Eberhard WG, Robinson AS (2007) Copulation behaviour of Glossina pallidipes (Diptera: Muscidae) outside and inside the female, with a discussion of genitalic evolution. Bull Entomol Res 97:471–488. doi:10.1017/S0007485307005214

    PubMed  Google Scholar 

  • Briceño RD, Chinea-Cano E, Wegrzynek D, Eberhard WG (in preparation) New technique opens a new field of study, genital behavior during copulation

  • Chapman RF (1969) Insects structure and function. English University Press, London

    Google Scholar 

  • Chapman T, Arnqvist G, Bangham J, Rowe L (2003) Sexual conflict. Trends Ecol Evol 18:41–47. doi:10.1016/S0169-5347(02)00004-6

    Google Scholar 

  • Cordero C, Eberhard WG (2003) Female choice of sexually antagonistic male adaptations: a critical review of some current research. J Evol Biol 16:1–6. doi:10.1046/j.1420-9101.2003.00506.x

    CAS  PubMed  Google Scholar 

  • Cordero C, Eberhard WG (2005) Interaction between sexually antagonistic selection and mate choice in the evolution of female responses to male traits. Evol Ecol 19:111–122. doi:10.1007/s10682-004-7918-2

    Google Scholar 

  • Córdoba-Aguilar A (2005) Possible coevolution of male and female genital form and function in a calopterygid damselfly. J Evol Biol 18:132–137. doi:10.1111/j.1420-9101.2004.00796.x

    PubMed  Google Scholar 

  • Crean CS, Gilburn A (1998) Sexual selection as a side-effect of sexual conflict in the sea-weed fly, Coelopa ursina (Diptera: Coelopidae). Anim Behav 56:1405–1410. doi:10.1006/anbe.1998.0932

    PubMed  Google Scholar 

  • Danielsson I, Askenmo C (1999) Male genital traits and mating interval affect male fertilization success in the water strider Gerris lacustris. Behav Ecol Sociobiol 46:149–156. doi:10.1007/s002650050604

    Google Scholar 

  • Darwin C (1871) The descent of man and selection in relation to sex, 6th edn. Modern Library, New York (Reprinted)

    Google Scholar 

  • Dixson AF (1987) Observations on the evolution of the genitalia and copulatory behavior in male primates. J Zool (London) 213:423–443

    Google Scholar 

  • Dixson AF (1998) Primate sexuality. Oxford University Press, Oxford

    Google Scholar 

  • Dodson G (2000) Behavior of the Phytalmiinae and the evolution of antlers in tephritid flies. In: Aluja M, Norrbom A (eds) Fruit flies (Tephritidae): phylogeny and evolution of behavior. CRC Press, Del Ray, pp 175–184

    Google Scholar 

  • Dominick RB, Ferguson DC, Franclemont JG, Hodges RW, Munroe EG (eds) (1971–1998) The moths of America North of Mexico. E. W. Classey Limited and RBD Publications, London

    Google Scholar 

  • Eberhard WG (1985) Sexual selection and animal genitalia. Harvard University Press, Cambridge

    Google Scholar 

  • Eberhard WG (1990) Genitalic courtship in Acmaeodera impluviata (Coleoptera: Buprestidae). J Kans Entomol Soc 63:345–346

    Google Scholar 

  • Eberhard WG (1993) Evaluating models of sexual selection by female choice: genitalia as a test case. Am Nat 142:564–571. doi:10.1086/285556

    CAS  PubMed  Google Scholar 

  • Eberhard WG (1994) Evidence for widespread courtship during copulation in 131 species of insects and spiders, and implications for cryptic female choice. Evol Int J Org Evol 48:711–733. doi:10.2307/2410481

    Google Scholar 

  • Eberhard WG (1996) Female control: sexual selection by cryptic female choice. Princeton University Press, Princeton

    Google Scholar 

  • Eberhard WG (2000) Sexual behavior in the medfly, Ceratitis capitata. In: Aluja M, Norrbom A (eds) Fruit flies (Tephritidae): phylogeny and evolution of behavior. CRC Press, Del Ray, pp 457–487

    Google Scholar 

  • Eberhard WG (2001a) The functional morphology of species-specific clasping structures on the front legs of male Archisepsis and Palaeosepsis flies (Diptera, Sepsidae). Zool J Linn Soc 133:335–368. doi:10.1111/j.1096-3642.2001.tb00630.x

    Google Scholar 

  • Eberhard WG (2001b) Species-specific genitalic copulatory courtship in sepsid flies (Diptera, Sepsidae, Microsepsis). Evol Int J Org Evol 55:93–102

    CAS  Google Scholar 

  • Eberhard WG (2001c) Genitalic behavior during copulation in Hybosciara gigantea (Diptera: Sciaridae) and the evolution of species-specific genitalia. J Kans Entomol Soc 74:1–9

    Google Scholar 

  • Eberhard WG (2002) Physical restraint or stimulation? The function(s) of the modified front legs of male Archisepsis diversiformis (Diptera, Sepsidae). J Insect Behav 15:831–850. doi:10.1023/A:1021161915227

    Google Scholar 

  • Eberhard WG (2003) Sexual behavior of male Themira minor (Diptera, Sepsidae), and movements of the male’s sternal lobes and genitalic surstyli. Can Entomol 135:569–581

    Google Scholar 

  • Eberhard WG (2004a) Male–female conflicts and genitalia: failure to confirm predictions in insects and spiders. Biol Rev Camb Philos Soc 79:121–186. doi:10.1017/S1464793103006237

    PubMed  Google Scholar 

  • Eberhard WG (2004b) Rapid divergent evolution of sexual morphology: comparative tests of sexually antagonistic coevolution and traditional female choice. Evol Int J Org Evol 58:1947–1970

    Google Scholar 

  • Eberhard WG (2005) Sexual morphology of male Sepsis cynipsea (Diptera: Sepsidae): lack of support for sexually antagonistic coevolution and lock and key hypotheses. Can Entomol 137:551–565

    Google Scholar 

  • Eberhard WG (2009) Genitalic evolution: theory and data. In: Leonard J, Cordoba-Aguilar A (eds) The evolution of primary sexual characters in animals. Oxford University Press, Oxford

    Google Scholar 

  • Eberhard WG, Gelhaus J (2009) Genitalic stridulation in a male tupulid fly. Rev Biol Trop (in press)

  • Eberhard WG, Huber BA (2009) Spider genitalia: precise maneouvers with a numb structure in a complex lock. In: Leonard J, Cordoba-Aguilar A (eds) The evolution of primary sexual characters in animals. Oxford University Press, Oxford (in press)

    Google Scholar 

  • Eberhard WG, Pereira F (1995) The process of intromission in the medfly, Ceratitis capitata (Diptera, Tephritidae). Psyche (Stuttg) 102:101–122

    Google Scholar 

  • Eberhard WG, Pereira F (1996) Functional morphology of male genetic surstyli in the dungflies Archisepsis diversiformis and A. ecalcarata (Diptera: Sepsidae). J Kans Entomol Soc 69:43–60

    Google Scholar 

  • Forbes WTM (1941) Does he stridulate? (Lepidoptera: Eupterotidae). Entomol News 52:79–82

    Google Scholar 

  • Forster W, Wohlfahrt TA (1952–1981) Die Schmetterlinge Mitteleuropas. Franckh’sche Velagshandlung, Stuttgart

    Google Scholar 

  • Ghiselin M (2009) Darwin’s view. In: Leonard J, Cordoba-Aguilar A (eds) The evolution of primary sexual characters in animals. Oxford University Press, Oxford

  • Gillot C, Langley PA (1981) The control of receptivity and ovulation in the tsetse fly, Glossina morsitans. Physiol Entomol 6:269–281. doi:10.1111/j.1365-3032.1981.tb00271.x

    Google Scholar 

  • Gwynne DT, Edwards ED (1986) Ultrasound production by genital stridulation in Syntonarcha iriastis (Lepidoptera: Pyralidae): long distance signaling by male moths? Zool J Linn Soc 88:363–376. doi:10.1111/j.1096-3642.1986.tb02253.x

    Google Scholar 

  • Hedin M (1997) Speciational history in a diverse clade of habitat-specialized spiders (Araneae: Nesticidae: Nesticus): inferences from geographic-based sampling. Evol Int J Org Evol 51:1929–1945. doi:10.2307/2411014

    Google Scholar 

  • Holland B, Rice WR (1998) Chase-away sexual selection: antagonistic seduction versus resistence. Evol Int J Org Evol 52:1–7. doi:10.2307/2410914

    Google Scholar 

  • Holman L, Snook RR (2006) Spermicide, cryptic female choice and the evolution of sperm form and function. J Evol Biol 19:1660–1670. doi:10.1111/j.1420-9101.2006.01112.x

    CAS  PubMed  Google Scholar 

  • Hosken DJ, Stockley P (2004) Sexual selection and genital evolution. Trends Ecol Evol 19:87–93. doi:10.1016/j.tree.2003.11.012

    PubMed  Google Scholar 

  • Hosken DJ, Minder AM, Ward PI (2005) Male genital allometry in Scathophagidae (Diptera). Evol Ecol 19:501–515. doi:10.1007/s10682-005-1023-z

    Google Scholar 

  • House CM, Simmons LW (2003) Genital morphology and fertilization success in the dung beetle Onthopahgus taurus: an example of sexually selected male genitalia. Proc R Soc Lond B Biol Sci 278:447–455. doi:10.1098/rspb.2002.2266

    Google Scholar 

  • Huber BA, Eberhard WG (1997) Courtship, genitalia, and genital mechanics in Physocyclus globosus (Araneae, Pholcidae). Can J Zool 74:905–918. doi:10.1139/z97-109

    Google Scholar 

  • Huemer P, Karsholt O, Lyneborg L (1996) Microlepidoptera of Europe. Apollo Books, Stenstrup

    Google Scholar 

  • Ingram KK, Laamanen T, Puniamoorthy N, Meier R (2008) Lack of morphological coevolution between male forelegs and female wings in Themira (Sepsidae: Diptera: Insecta). Biol J Linn Soc Lond 93:227–238

    Google Scholar 

  • Kokko H, Brooks R, Jennions M, Morley J (2003) The evolution of mate choice and mating biases. Proc R Soc Lond B Biol Sci 270:653–664. doi:10.1098/rspb.2002.2235

    Google Scholar 

  • Leonard J, Córdoba-Aguilar A (2009) The evolution of primary sexual characters in animals. Oxford University Press, Oxford (in press)

    Google Scholar 

  • Lewis CT, Pollock JN (1975) Engagement of the phallosome in blowflies. J Ent (A) 49:137–147

    Google Scholar 

  • Liebherr JK (1992) Phylogeny and revision of the Platynus degallieri species group (Coleoptera: Carabidae: Platini). Bull Am Mus Nat Hist 214:1–115

    Google Scholar 

  • McAlpine DK (1988) Studies in upside-down flies (Diptera: Neurochaetidae). Part II. Biology, adaptations, and specific mating mechanisms. Proc Linn Soc N S W 110:59–82

    Google Scholar 

  • Merrett DJ (1989) The morphology of the phallosome and accessary gland material transfer during copulation in the blowfly, Lucilia cuprina (Insecta, Diptera). Zoomorphology 109:359–366. doi:10.1007/BF00312276

    Google Scholar 

  • Mikkola K (2008) The lock-and-key mechanisms of the internal genitalia of the Noctuidae (Lepidoptera): how are they selected for? Eur J Entomol 105:13–25

    Google Scholar 

  • Miller GT, Pitnick S (2003) Sperm–female coevolution in Drosophila. Science 298:1230–1233. doi:10.1126/science.1076968

    Google Scholar 

  • Moore AJ, Gowaty PA, Moore PJ (2003) Females avoid manipulative males and live longer. J Evol Biol 16:530–532

    Google Scholar 

  • Mühlhäuser C, Blanckenhorn W (2002) The costs of avoiding matings in the dung fly Sepsis cynipsea. Behav Ecol 13:359–365. doi:10.1093/beheco/13.3.359

    Google Scholar 

  • Orteiza N, Linder JE, Rice WR (2005) Sexy sons from remating do not recoup the direct costs of harmful interactions in the Drosophila melanogaster laboratory system. J Evol Biol 18:1315–1323. doi:10.1111/j.1420-9101.2005.00923.x

    CAS  PubMed  Google Scholar 

  • Otronen M (1990) Mating behavior and sperm competition in the fly, Dryomyza anilis. Behav Ecol Sociobiol 26:349–356. doi:10.1007/BF00171101

    Google Scholar 

  • Parag A, Bennett NC, Faulkes CG, Bateman PW (2006) Penile morphology of African mole rats (Bathyergidae): structureal modification in relation to mode of ovulation and degree of sociality. J Zool (London) 270:323–329. doi:10.1111/j.1469-7998.2006.00141.x

    Google Scholar 

  • Parker GA (1972) Reproductive behavior of Sepsis cynipsea (L.) (Diptera: Sepsidae). I. A preliminary analysis of the reproductive strategy and its associated behaviour patterns. Behaviour 41:172–206. doi:10.1163/156853972X00257

    Google Scholar 

  • Parker GA (1979) Sexual selection and sexual conflict. In: Blum MS, Blum N (eds) Sexual selection and reproductive competition in insects. Academic Press, New York, pp 123–166

    Google Scholar 

  • Parker GA (2005) Sexual conflict over mating and fertilization: an overview. Philos Trans R Soc B 361:235–259. doi:10.1098/rstb.2005.1785

    Google Scholar 

  • Peretti A, Eberhard WG, Briceño RD (2006) Copulatory dialogue: female spiders sing during copulation to influence male genitalic movements. Anim Behav 72:413–421. doi:10.1016/j.anbehav.2006.01.014

    Google Scholar 

  • Phelan PL (1997) Evolution of mate-signalling in moths: phylogenetic considerations and predictions from the asymmetric tracking hypothesis. In: Choe J, Crespie B (eds) Mating systems in insects and arachnids. Cambridge University Press, Cambridge, pp 240–256

    Google Scholar 

  • Pizarri T, Snook RR (2003) Perspective: sexual conflict and sexual selection: chasing away paradigm shifts. Evol Int J Org Evol 57:1223–1236

    Google Scholar 

  • Pizarri T, Snook RR (2004) Sexual conflict and sexual selection: measuring antagonistic coevolution. Evol Int J Org Evol 58:1389–1393

    Google Scholar 

  • Rice WR, Chippendale AK (2001) Intersexual ontogenetic conflicts. J Evol Biol 14:685–693. doi:10.1046/j.1420-9101.2001.00319.x

    Google Scholar 

  • Richards OW (1927) The specific characters of the British humblebees (Hymenoptera). Trans Roy Ent Soc Lond 75:233–265

    Google Scholar 

  • Richards OW (1978) The social wasps of the Americas. British Museum (Natural History), London

    Google Scholar 

  • Robertson HM, Paterson HEH (1982) Mate recognition and mechanical isolation in Enallagma damselflies (Odonata: Coenagrionidae). Evol Int J Org Evol 36:243–250. doi:10.2307/2408042

    Google Scholar 

  • Robinson JV, Novak KL (1997) The relationship between mating system and penis morphology in ischnuran damselflies (Odonata: Coenagrionidae). Biol J Linn Soc Lond 60:187–200

    Google Scholar 

  • Robson GC, Richards OW (1936) The variation of animals in nature. Longmans, Green and Co., London

    Google Scholar 

  • Rodriguez V (1994) Fuentes de variación en la precedencia de espermatozoides de Chelymorpha alternans Boheman 1854 (Coleoptera: Chrysomelidae: Cassidinae). Master’s thesis, Universidad de Costa Rica

  • Rodriguez V, Windsor DM, Eberhard WG (2004) Tortoise beetle genitalia and demonstration of a sexually selected advantage for flagellum length in Chelymorpha alternans (Chrysomelidae, Cassidini, Stolaini). In: Jolivet P, Santiago-Blay JA, Schmitt M (eds) New developments in the biology of Chrysomelidae. SPB Academic Publishing, The Hague, pp 739–748

    Google Scholar 

  • Roeder KD (1967) Nerve cells and insect behavior. Harvard University Press, Cambridge

    Google Scholar 

  • Roig-Alsina A (1993) The evolution of the apoid endophallus, its phylogenetic implications, and functional significance of the genital capsule (Hymenoptera, Apoidea). Boll Zool 60:169–183

    Google Scholar 

  • Ronkainen K, Kaitala A, Huttenen R (2005) The effect of abdominal spines on female mating frequency and fecundity in a water strider. J Insect Behav 18:619–631. doi:10.1007/s10905-005-7015-6

    Google Scholar 

  • Rowe L, Arnqvist G (2002) Sexually antagonistic coevolution in a mating system: comparative approaches to address evolutionary processes. Evol Int J Org Evol 56:754–767

    Google Scholar 

  • Saunders DS, Dodd CHW (1972) Mating, insemination, and ovulation in the tsetse fly, Glossina morsitans. J Insect Physiol 18:187–198. doi:10.1016/0022-1910(72)90119-9

    Google Scholar 

  • Sauter A, Brown MJF, Baer B, Schmid-Hempel P (2001) Males of social insects can prevent queens from multiple mating. Proc R Soc Lond B Biol Sci 268:1449–1454. doi:10.1098/rspb.2001.1680

    CAS  Google Scholar 

  • Scudder G (1971) Comparative morphology of insect genitalia. Ann Rev Ent 16:379–406. doi:10.1146/annurev.en.16.010171.002115

    Google Scholar 

  • Shapiro AM, Porter AH (1989) The lock-and-key hypothesis: evolutionary and biosystematic interpretation of insect genitalia. Ann Rev Entomol 34:231–245. doi:10.1146/annurev.en.34.010189.001311

    Google Scholar 

  • Simmons LW (2001) Sperm competition and its evolutionary consequences in the insects. Princeton University Press, Princeton

    Google Scholar 

  • Stockley P, Preston BT (2004) Sperm competition and diversity in rodent copulatory behavior. J Evol Biol 17:1048–1057. doi:10.1111/j.1420-9101.2004.00742.x

    CAS  PubMed  Google Scholar 

  • Tuxen L (1970) A taxonomist’s glossary of genitalia of insects. S-H Service Agency, Darien

    Google Scholar 

  • Verrell PA (1992) Primate penile morphologies and social systems: further evidence for an association. Fol Primat 59:114–120. doi:10.1159/000156648

    CAS  Google Scholar 

  • Ward PI (1983) The effects of size on the mating behaviour of the dung fly Sepsis cynipsea. Behav Ecol Sociobiol 13:75–80. doi:10.1007/BF00295078

    Google Scholar 

  • Ware A, Opell BD (1989) A test of the mechanical isolation hypothesis in two similar spider species. J Arachnol 17:149–162

    Google Scholar 

  • Wenninger EJ, Averill AL (2006) Influence of body and genital morphology on relative male fertilization success in oriental beetle. Behav Ecol 17:656–663. doi:10.1093/beheco/ark013

    Google Scholar 

  • Werner M, Simmons LW (2008) The evolution of male genitalia: functional integration of genital sclerites in the dung beetle Onthophagus taurus. Biol J Linn Soc Lond 93:257–266

    Article  Google Scholar 

  • West-Eberhard MJ (1984) Sexual selection, social communication, and species-specific signals in insects. In: Lewis T (ed) Insect communication. Academic Press, New York, pp 284–324

    Google Scholar 

  • Wood DM (1991) Homology and phylogenetic implications of male genitalia in Diptera. The ground plan. In: Weismann, Orszagh, and Pont A (eds) Proceedings of the Second International Congress of Dipterology. The Hague, pp 255–284

Download references

Acknowledgments

I am extremely grateful to Michael Schmitt and Dominique Joly for honoring me by organizing a symposium on genital evolution. I also thank Daniel Briceño, Marie Djernaes, Rudolf Meier, Alfredo Peretti, Hojun Song, and Nick Tatarnic for access to unpublished work, Y. Kamimura and P. Schmid-Hempel for permission to quote personal communications, David Hosken, Santosh Jagadeeshan, Dominique Joly, Rafael Lucas Rodriguez, and two referees for useful comments. My research was supported financially by the Smithsonian Tropical Research Institute and the Universidad de Costa Rica.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William G. Eberhard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eberhard, W.G. Evolution of genitalia: theories, evidence, and new directions. Genetica 138, 5–18 (2010). https://doi.org/10.1007/s10709-009-9358-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-009-9358-y

Keywords

Navigation