Skip to main content

Advertisement

Log in

Identification of miR-135b as a novel regulator of TGFβ pathway in gastric cancer

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Gastric cancer (GC) is a common malignant tumor worldwide, with a high incidence and low survival rate. The transforming growth factor-beta (TGFβ) signaling pathway usually plays a tumor-suppressive role and is normally quietened in GC. The downregulation of transforming growth factor-beta receptor II (TGFBR2) affects TGFβ signaling pathway, which exerts an immense effect on tumor cell proliferation and metastasis. Although the effect of the TGFβ signaling pathway on cancer cells is well studied, little is known about the mechanism by which TGFBR2 expression is downregulated. Here, we showed that TGFBR2 protein, but not TGFBR2 mRNA, was consistently downregulated in GC, suggesting that post-transcriptional mechanism is involved in the regulation of TGFBR2. Bioinformatics analysis and luciferase reporter analysis proved that miR-135b combines precisely with the 3′-UTR of TGFBR2 mRNA. EdU assays and cell migration assays respectively showed that miR-135b overexpression induced the growth and invasion of GC cells. However, the overexpression of TGFBR2 had the opposite effect. TGFBR2 acted as the direct target for miR-135b and was downregulated in gastric cancer cells. Therefore, miR-135b promotes proliferation and migration of GC cells by negatively regulating TGFBR2 expression, displaying an oncomiR effect. Altogether, this conclusive evidence supported that miR-135b mediates the progression of GC by targeting TGFBR2 and miR-135b/TGFBR2 axis can be used in future targeted therapy for GC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets supporting the conclusions of this article are included within the article and its additional files.

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  2. Chen XL, Hong LL, Wang KL, Liu X, Wang JL, Lei L, Xu ZY, Cheng XD, Ling ZQ (2019) Deregulation of CSMD1 targeted by microRNA-10b drives gastric cancer progression through the NF-kappaB pathway. Int J Biol Sci 15:2075–2086. https://doi.org/10.7150/ijbs.23802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chen Z, Li Z, Soutto M, Wang W, Piazuelo MB, Zhu S, Guo Y, Maturana MJ, Corvalan AH, Chen X, Xu Z, El-Rifai WM (2019) Integrated analysis of mouse and human gastric neoplasms identifies conserved microRNA networks in gastric carcinogenesis. Gastroenterology 156:1127–1139 e1128. https://doi.org/10.1053/j.gastro.2018.11.052

    Article  CAS  PubMed  Google Scholar 

  4. Darnet S, Moreira FC, Hamoy IG, Burbano R, Khayat A, Cruz A, Magalhaes L, Silva A, Santos S, Demachki S, Assumpcao M, Assumpcao P, Ribeiro-Dos-Santos A (2015) High-throughput sequencing of miRNAs reveals a tissue signature in gastric cancer and suggests novel potential biomarkers. Bioinform Biol Insights 9:1–8. https://doi.org/10.4137/BBI.S23773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Digklia A, Wagner AD (2016) Advanced gastric cancer: current treatment landscape and future perspectives. World J Gastroenterol 22:2403–2414. https://doi.org/10.3748/wjg.v22.i8.2403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ferro A, Peleteiro B, Malvezzi M, Bosetti C, Bertuccio P, Levi F, Negri E, La Vecchia C, Lunet N (2014) Worldwide trends in gastric cancer mortality (1980-2011), with predictions to 2015, and incidence by subtype. Eur J Cancer 50:1330–1344. https://doi.org/10.1016/j.ejca.2014.01.029

    Article  PubMed  Google Scholar 

  7. Guo W, Dong Z, Guo Y, Chen Z, Yang Z, Kuang G (2012) Association of polymorphisms in transforming growth factor-β receptors with susceptibility to gastric cardia adenocarcinoma. Mol Biol Rep 39:4301–4309. https://doi.org/10.1007/s11033-011-1217-0

    Article  CAS  PubMed  Google Scholar 

  8. Hammond SM (2015) An overview of microRNAs. Adv Drug Deliv Rev 87:3–14. https://doi.org/10.1016/j.addr.2015.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. He B, Xu T, Pan B, Pan Y, Wang X, Dong J, Sun H, Xu X, Liu X, Wang S (2018) Polymorphisms of TGFBR1, TLR4 are associated with prognosis of gastric cancer in a Chinese population. Cancer Cell Int 18:191. doi:https://doi.org/10.1186/s12935-018-0682-0

  10. Heldin CH, Vanlandewijck M, Moustakas A (2012) Regulation of EMT by TGFbeta in cancer. FEBS Lett 586:1959–1970. https://doi.org/10.1016/j.febslet.2012.02.037

    Article  CAS  PubMed  Google Scholar 

  11. Huang Y, Xiao W, Jiang X, Li H (2019) MicroRNA-935 acts as a prognostic marker and promotes cell proliferation, migration, and invasion in colorectal cancer. Cancer Biomark 26:229–237. https://doi.org/10.3233/CBM-190183

    Article  CAS  PubMed  Google Scholar 

  12. Iorio MV, Croce CM (2012) MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med 4:143–159. https://doi.org/10.1002/emmm.201100209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Iuliano R, Vismara MF, Dattilo V, Trapasso F, Baudi F, Perrotti N (2013) The role of microRNAs in cancer susceptibility. Biomed Res Int 2013:591931–591939. https://doi.org/10.1155/2013/591931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jin H, Luo S, Wang Y, Liu C, Piao Z, Xu M, Guan W, Li Q, Zou H, Tan QY, Yang ZZ, Wang Y, Wang D, Xu CX (2017) miR-135b stimulates osteosarcoma recurrence and lung metastasis via notch and Wnt/beta-catenin signaling. Mol Ther Nucleic Acids 8:111–122. https://doi.org/10.1016/j.omtn.2017.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Karimi P, Islami F, Anandasabapathy S, Freedman ND, Kamangar F (2014) Gastric cancer: descriptive epidemiology, risk factors, screening, and prevention. Cancer Epidemiol Biomark Prev 23:700–713. https://doi.org/10.1158/1055-9965.EPI-13-1057

    Article  Google Scholar 

  16. Liu S, Chen S, Zeng J (2018) TGFbeta signaling: a complex role in tumorigenesis (review). Mol Med Rep 17:699–704. https://doi.org/10.3892/mmr.2017.7970

    Article  CAS  PubMed  Google Scholar 

  17. Lo SS, Hung PS, Chen JH, Tu HF, Fang WL, Chen CY, Chen WT, Gong NR, Wu CW (2012) Overexpression of miR-370 and downregulation of its novel target TGFbeta-RII contribute to the progression of gastric carcinoma. Oncogene 31:226–237. https://doi.org/10.1038/onc.2011.226

    Article  CAS  PubMed  Google Scholar 

  18. Lu Y, Hu J, Sun W, Li S, Deng S, Li M (2016) MiR-29c inhibits cell growth, invasion, and migration of pancreatic cancer by targeting ITGB1. Onco Targets Ther 9:99–109. https://doi.org/10.2147/OTT.S92758

    Article  CAS  PubMed  Google Scholar 

  19. Lv ZD, Xin HN, Yang ZC, Wang WJ, Dong JJ, Jin LY, Li FN (2019) miR-135b promotes proliferation and metastasis by targeting APC in triple-negative breast cancer. J Cell Physiol 234:10819–10826. https://doi.org/10.1002/jcp.27906

    Article  CAS  PubMed  Google Scholar 

  20. Magalhaes L, Quintana LG, Lopes DCF, Vidal AF, Pereira AL, D’Araujo Pinto LC, de Jesus Viana Pinheiro J, Khayat AS, Goulart LR, Burbano R, de Assumpcao PP, Ribeiro-Dos-Santos A (2018) APC gene is modulated by hsa-miR-135b-5p in both diffuse and intestinal gastric cancer subtypes. BMC Cancer 18:1055. https://doi.org/10.1186/s12885-018-4980-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mao L, Li Y, Zhao J, Li Q, Yang B, Wang Y, Zhu Z, Sun H, Zhai Z (2017) Transforming growth factor-β1 contributes to oxaliplatin resistance in colorectal cancer via epithelial to mesenchymal transition. Oncol Lett 14:647–654. https://doi.org/10.3892/ol.2017.6209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Marques-Lespier JM, Gonzalez-Pons M, Cruz-Correa M (2016) Current perspectives on gastric cancer. Gastroenterol Clin N Am 45:413–428. https://doi.org/10.1016/j.gtc.2016.04.002

    Article  Google Scholar 

  23. Massagué J (1998) TGF-beta signal transduction. Annu Rev Biochem 67:753–791. https://doi.org/10.1146/annurev.biochem.67.1.753

    Article  PubMed  Google Scholar 

  24. Massague J (2012) TGFbeta signalling in context. Nat Rev Mol Cell Biol 13:616–630. https://doi.org/10.1038/nrm3434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Michlewski G, Cáceres JF (2019) Post-transcriptional control of miRNA biogenesis. RNA (New York, NY) 25:1-16. doi:https://doi.org/10.1261/rna.068692.118

  26. Mishra S, Yadav T, Rani V (2016) Exploring miRNA based approaches in cancer diagnostics and therapeutics. Crit Rev Oncol Hematol 98:12–23. https://doi.org/10.1016/j.critrevonc.2015.10.003

    Article  PubMed  Google Scholar 

  27. Moon H, Ju HL, Chung SI, Cho KJ, Eun JW, Nam SW, Han KH, Calvisi DF, Ro SW (2017) Transforming growth factor-beta promotes liver tumorigenesis in mice via up-regulation of snail. Gastroenterology 153:1378–1391 e1376. https://doi.org/10.1053/j.gastro.2017.07.014

    Article  CAS  PubMed  Google Scholar 

  28. Moore-Smith L, Pasche B (2011) TGFBR1 signaling and breast cancer. J Mammary Gland Biol Neoplasia 16:89–95. https://doi.org/10.1007/s10911-011-9216-2

    Article  PubMed  PubMed Central  Google Scholar 

  29. Morris SM, Carter KT, Baek JY, Koszarek A, Yeh MM, Knoblaugh SE, Grady WM (2015) TGF-beta signaling alters the pattern of liver tumorigenesis induced by Pten inactivation. Oncogene 34:3273–3282. https://doi.org/10.1038/onc.2014.258

    Article  CAS  PubMed  Google Scholar 

  30. Nadauld LD, Garcia S, Natsoulis G, Bell JM, Miotke L, Hopmans ES, Xu H, Pai RK, Palm C, Regan JF, Chen H, Flaherty P, Ootani A, Zhang NR, Ford JM, Kuo CJ, Ji HP (2014) Metastatic tumor evolution and organoid modeling implicate TGFBR2 as a cancer driver in diffuse gastric cancer. Genome Biol 15:428. https://doi.org/10.1186/s13059-014-0428-9

    Article  PubMed  PubMed Central  Google Scholar 

  31. Pu M, Chen J, Tao Z, Miao L, Qi X, Wang Y, Ren J (2018) Regulatory network of miRNA on its target: coordination between transcriptional and post-transcriptional regulation of gene expression. Cell Mol Life Sci 76:441–451. https://doi.org/10.1007/s00018-018-2940-7

    Article  CAS  PubMed  Google Scholar 

  32. Rupaimoole R, Slack FJ (2017) MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 16:203–222. https://doi.org/10.1038/nrd.2016.246

    Article  CAS  PubMed  Google Scholar 

  33. Tetreault N, De Guire V (2013) miRNAs: their discovery, biogenesis and mechanism of action. Clin Biochem 46:842–845. https://doi.org/10.1016/j.clinbiochem.2013.02.009

    Article  CAS  PubMed  Google Scholar 

  34. Venerito M, Vasapolli R, Rokkas T, Malfertheiner P (2018) Gastric cancer: epidemiology, prevention, and therapy. Helicobacter 23(Suppl 1):e12518. https://doi.org/10.1111/hel.12518

    Article  CAS  PubMed  Google Scholar 

  35. Wang J, Liu H, Li M (2019) Downregulation of miR-505 promotes cell proliferation, migration and invasion, and predicts poor prognosis in breast cancer. Oncol Lett 18:247–254. https://doi.org/10.3892/ol.2019.10334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang YN, Xu F, Zhang P, Wang P, Wei YN, Wu C, Cheng SJ (2019) MicroRNA-575 regulates development of gastric cancer by targeting PTEN. Biomed Pharmacother 113:108716. https://doi.org/10.1016/j.biopha.2019.108716

    Article  CAS  PubMed  Google Scholar 

  37. Wei C, Gao JJ (2019) Downregulated miR-383-5p contributes to the proliferation and migration of gastric cancer cells and is associated with poor prognosis. PeerJ 7:e7882. https://doi.org/10.7717/peerj.7882

    Article  PubMed  PubMed Central  Google Scholar 

  38. Weiss CN, Ito K (2017) A macro view of microRNAs: the discovery of microRNAs and their role in hematopoiesis and hematologic disease. Int Rev Cell Mol Biol 334:99–175. https://doi.org/10.1016/bs.ircmb.2017.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xu J, Acharya S, Sahin O, Zhang Q, Saito Y, Yao J, Wang H, Li P, Zhang L, Lowery FJ, Kuo WL, Xiao Y, Ensor J, Sahin AA, Zhang XH, Hung MC, Zhang JD, Yu D (2015) 14-3-3zeta turns TGF-beta’s function from tumor suppressor to metastasis promoter in breast cancer by contextual changes of Smad partners from p53 to Gli2. Cancer Cell 27:177–192. https://doi.org/10.1016/j.ccell.2014.11.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yin L, Xiao X, Georgikou C, Luo Y, Liu L, Gladkich J, Gross W, Herr I (2019) Sulforaphane induces miR135b-5p and its target gene, RASAL2, thereby inhibiting the progression of pancreatic cancer. Mol Ther Oncolytics 14:74–81. https://doi.org/10.1016/j.omto.2019.03.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang XY, Zhang PY (2017) Gastric cancer: somatic genetics as a guide to therapy. J Med Genet 54:305–312. https://doi.org/10.1136/jmedgenet-2016-104171

    Article  CAS  PubMed  Google Scholar 

  42. Zhang H, Wu H, Zheng J, Yu P, Xu L, Jiang P, Gao J, Wang H, Zhang Y (2013) Transforming growth factor beta1 signal is crucial for dedifferentiation of cancer cells to cancer stem cells in osteosarcoma. Stem Cells 31:433–446. https://doi.org/10.1002/stem.1298

    Article  CAS  PubMed  Google Scholar 

  43. Zhang Z, Gao Y, Xu MQ, Wang CJ, Fu XH, Liu JB, Han DX, Jiang H, Yuan B, Zhang JB (2019) miR-181a regulate porcine preadipocyte differentiation by targeting TGFBR1. Gene 681:45–51. https://doi.org/10.1016/j.gene.2018.09.046

    Article  CAS  PubMed  Google Scholar 

Download references

Code availability

Not applicable

Funding

This work was supported by grants from the National Natural Science Foundation of China (No. 81772629) and the Demonstrative Research Platform of Clinical Evaluation Technology for New Anticancer Drugs (No. 2018ZX09201015). This work was also supported by the Tianjin Science Foundation (No. 18JCYBJC92000) and the Science & Technology Development Fund of the Tianjin Education Commission for Higher Education (2018KJ046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Ba.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Ethics approval

All animal studies were performed by skilled laboratory personnel with the approval of the Ethics Committee of Tianjin Medical University Cancer Institute and Hospital (Tianjin, China), and informed consent was obtained from all patients. All experimental procedures were performed under approved protocols following the principles and procedures outlined in the National Institutes of Health Guide for the Care and Use of Laboratory Animals.

Consent to participate

Written informed consent was obtained from the parents.

Consent for publication

The authors affirm that human research participants provided informed consent for the publication of the image in Fig. 1a.

Disclaimer

The funders had no role in the study design, the data collection and analysis, interpretation of the data, the writing of the report, and the decision to submit this article for publication.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key points

1. miR-135b showed a high expression pattern in GC.

2. The interaction between miR-135b and TGFBR2 contributed to the invasion and metastasis of gastric cancer cells.

3. Our results illustrated that inhibition of miR-135b in GC serves as a new method for clinical treatment.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, M., Wang, P., Yang, J. et al. Identification of miR-135b as a novel regulator of TGFβ pathway in gastric cancer. J Physiol Biochem 76, 549–560 (2020). https://doi.org/10.1007/s13105-020-00759-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-020-00759-9

Keywords

Navigation