Skip to main content
Log in

Obesity of mice lacking VAP-1/SSAO by Aoc3 gene deletion is reproduced in mice expressing a mutated vascular adhesion protein-1 (VAP-1) devoid of amine oxidase activity

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The product of Aoc3 gene is known as vascular adhesion protein-1 (VAP-1), a glycoprotein contributing to leukocyte extravasation and exhibiting semicarbazide-sensitive amine oxidase activity (SSAO). Regarding the immune functions of VAP-1/SSAO, it is known that mice bearing Aoc3 gene knock-out (AOC3KO) exhibit defects in leukocyte migration similar to those of mice expressing a mutated VAP-1 lacking functional SSAO activity (knock-in, AOC3KI). However, it has not been reported whether these models differ regarding other disturbances. Thus, we further compared endocrine-metabolic phenotypes of AOC3KO and AOC3KI mice to their respective control. Special attention was paid on adiposity, glucose and lipid handling, since VAP-1/SSAO is highly expressed in adipose tissue (AT). In both mouse lines, no tissue SSAO activity was found, while Aoc3 mRNA was absent in AOC3KO only. Although food consumption was unchanged, both AOC3KO and AOC3KI mice were heavier and fatter than their respective controls. Other alterations commonly found in adipocytes from both lines were loss of benzylamine insulin-like action with unchanged insulin lipogenic responsiveness and adiponectin expression. A similar downregulation of inflammatory markers (CD45, IL6) was found in AT. Glucose handling and liver mass remained unchanged, while circulating lipid profile was distinctly altered, with increased cholesterol in AOC3KO only. These results suggest that the lack of oxidase activity found in AOC3KI is sufficient to reproduce the metabolic disturbances observed in AOC3KO mice, save those related with cholesterol transport. Modulation of SSAO activity therefore constitutes a potential target for the treatment of cardiometabolic diseases, especially obesity when complicated by low-grade inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Salmi M, Jalkanen S (2012) Ectoenzymes controlling leukocyte traffic. Eur J Immunol 42:284–292

    Article  CAS  PubMed  Google Scholar 

  2. Salmi M, Kalimo K, Jalkanen S (1993) Induction and function of vascular adhesion protein-1 at sites of inflammation. J Exp Med 178:2255–2260. https://doi.org/10.1084/jem.178.6.2255

    Article  CAS  PubMed  Google Scholar 

  3. Smith DJ, Salmi M, Bono P, Hellman J, Leu T, Jalkanen S (1998) Cloning of vascular adhesion protein 1 reveals a novel multifunctional adhesion molecule. J Exp Med 188:17–27. https://doi.org/10.1084/jem.188.1.17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Salmi M, Jalkanen S (2019) Vascular adhesion protein-1: a cell surface amine oxidase in translation. Antioxid Redox Signal 30:314–332. https://doi.org/10.1089/ars.2017.7418

    Article  CAS  PubMed  Google Scholar 

  5. Tipton KF (2018) 90 years of monoamine oxidase: some progress and some confusion. J Neural Transm (Vienna) 125:1519–1551. https://doi.org/10.1007/s00702-018-1881-5

    Article  CAS  Google Scholar 

  6. Olivieri A, Rico D, Khiari Z, Henehan G, O'Sullivan J, Tipton K (2011) From caffeine to fish waste: amine compounds present in food and drugs and their interactions with primary amine oxidase. J Neural Transm (Vienna) 118:1079–1089. https://doi.org/10.1007/s00702-011-0611-z

    Article  CAS  Google Scholar 

  7. Shen SH, Wertz DL, Klinman JP (2012) Implication for functions of the ectopic adipocyte copper amine oxidase (AOC3) from purified enzyme and cell-based kinetic studies. PLoS One 7:e29270. https://doi.org/10.1371/journal.pone.0029270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mercier N, Osborne-Pellegrin M, El Hadri K, Kakou A, Labat C, Loufrani L, Henrion D, Challande P, Jalkanen S, Feve B, Lacolley P (2006) Carotid arterial stiffness, elastic fibre network and vasoreactivity in semicarbazide-sensitive amine-oxidase null mouse. Cardiovasc Res 72:349–357. https://doi.org/10.1016/j.cardiores.2006.08.008

    Article  CAS  PubMed  Google Scholar 

  9. Bour S, Prévot D, Guigne C, Stolen C, Jalkanen S, Valet P, Carpéné C (2007) Semicarbazide-sensitive amine oxidase substrates fail to induce insulin-like effects in fat cells from AOC3 knockout mice. J Neural Transm (Vienna) 114:829–833. https://doi.org/10.1007/s00702-007-0671-2

    Article  CAS  Google Scholar 

  10. Carpéné C, Daviaud D, Boucher J, Bour S, Visentin V, Gres S, Duffaut C, Fontana E, Testar X, Saulnier-Blache JS, Valet P (2006) Short- and long-term insulin-like effects of monoamine oxidases and semicarbazide-sensitive amine oxidase substrates in cultured adipocytes. Metabolism 55:1397–1405. https://doi.org/10.1016/j.metabol.2006.06.011

    Article  CAS  PubMed  Google Scholar 

  11. Lopes de Carvalho L, Elovaara H, de Ruyck J, Vergoten G, Jalkanen S, Guedez G, Salminen TA (2018) Mapping the interaction site and effect of the Siglec-9 inflammatory biomarker on human primary amine oxidase. Sci Rep 8:2086. https://doi.org/10.1038/s41598-018-20618-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Romauch M (2020) Zinc-α2-glycoprotein as an inhibitor of amine oxidase copper-containing 3. Open Biol 10:190035. https://doi.org/10.1098/rsob.190035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Foot JS, Yow TT, Schilter H, Buson A, Deodhar M, Findlay AD, Guo L, McDonald IA, Turner CI, Zhou W, Jarolimek W (2013) PXS-4681A, a potent and selective mechanism-based inhibitor of SSAO/VAP-1 with anti-inflammatory effects in vivo. J Pharmacol Exp Ther 347:365–374

    Article  CAS  PubMed  Google Scholar 

  14. Kirton CM, Laukkanen ML, Nieminen A, Merinen M, Stolen CM, Armour K, Smith DJ, Salmi M, Jalkanen S, Clark MR (2005) Function-blocking antibodies to human vascular adhesion protein-1: a potential anti-inflammatory therapy. Eur J Immunol 35:3119–3130. https://doi.org/10.1002/eji.200535300

    Article  CAS  PubMed  Google Scholar 

  15. Martelius T, Salaspuro V, Salmi M, Krogerus L, Hockerstedt K, Jalkanen S, Lautenschlager I (2004) Blockade of vascular adhesion protein-1 inhibits lymphocyte infiltration in rat liver allograft rejection. Am J Pathol 165:1993–2001. https://doi.org/10.1016/s0002-9440(10)63250-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Noonan T, Lukas S, Peet GW, Pelletier J, Panzenbeck M, Hanidu A, Mazurek S, Wasti R, Rybina I, Roma T, Kronkaitis A, Shoultz A, Souza D, Jiang H, Nabozny G, Modis LK (2013) The oxidase activity of vascular adhesion protein-1 (VAP-1) is essential for function. Am J Clin Exp Immunol 2:172–185

    PubMed  PubMed Central  Google Scholar 

  17. Stolen CM, Marttila-Ichihara F, Koskinen K, Yegutkin GG, Turja R, Bono P, Skurnik M, Hanninen A, Jalkanen S, Salmi M (2005) Absence of the endothelial oxidase AOC3 leads to abnormal leukocyte traffic in vivo. Immunity 22:105–115. https://doi.org/10.1016/j.immuni.2004.12.006

    Article  CAS  PubMed  Google Scholar 

  18. Stolen CM, Yegutkin GG, Kurkijarvi R, Bono P, Alitalo K, Jalkanen S (2004) Origins of serum semicarbazide-sensitive amine oxidase. Circ Res 95:50–57. https://doi.org/10.1161/01.res.0000134630.68877.2f

    Article  CAS  PubMed  Google Scholar 

  19. Weston CJ, Shepherd EL, Claridge LC, Rantakari P, Curbishley SM, Tomlinson JW, Hubscher SG, Reynolds GM, Aalto K, Anstee QM, Jalkanen S, Salmi M, Smith DJ, Day CP, Adams DH (2015) Vascular adhesion protein-1 promotes liver inflammation and drives hepatic fibrosis. J Clin Invest 125:501–520. https://doi.org/10.1172/jci73722

    Article  PubMed  Google Scholar 

  20. Boomsma F, Hut H, Bagghoe U, van der Houwen A, van den Meiracker A (2005) Semicarbazide-sensitive amine oxidase (SSAO): from cell to circulation. Med Sci Monit 11:Ra122–Ra126

    CAS  PubMed  Google Scholar 

  21. Kuo CH, Wei JN, Yang CY, Ou HY, Wu HT, Fan KC, Wang SH, Hua CH, Hsiao CH, Lee MK, Li HY (2018) Serum vascular adhesion protein-1 is up-regulated in hyperglycemia and is associated with incident diabetes negatively. Int J Obes (Lond) 43:512–522. https://doi.org/10.1038/s41366-018-0172-4

    Article  CAS  Google Scholar 

  22. Salmi M, Stolen C, Jousilahti P, Yegutkin GG, Tapanainen P, Janatuinen T, Knip M, Jalkanen S, Salomaa V (2002) Insulin-regulated increase of soluble vascular adhesion protein-1 in diabetes. Am J Pathol 161:2255–2262. https://doi.org/10.1089/ars.2017.7418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Carpéné C, Bour S, Visentin V, Pellati F, Benvenuti S, Iglesias-Osma MC, Garcia-Barrado MJ, Valet P (2005) Amine oxidase substrates for impaired glucose tolerance correction. J Physiol Biochem 61:405–419

    Article  PubMed  Google Scholar 

  24. Yang H, Ralle M, Wolfgang MJ, Dhawan N, Burkhead JL, Rodriguez S, Kaplan JH, Wong GW, Haughey N, Lutsenko S (2018) Copper-dependent amino oxidase 3 governs selection of metabolic fuels in adipocytes. PLoS Biol 16:e2006519. https://doi.org/10.1371/journal.pbio.2006519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Iffiu-Soltesz Z, Mercader J, Daviaud D, Boucher J, Carpéné C (2011) Increased primary amine oxidase expression and activity in white adipose tissue of obese and diabetic db-/- mice. J Neural Transm (Vienna) 118:1071–1077. https://doi.org/10.1007/s00702-011-0586-9

    Article  CAS  Google Scholar 

  26. Wanecq E, Bour S, Verwaerde P, Smih F, Valet P, Carpéné C (2006) Increased monoamine oxidase and semicarbazide-sensitive amine oxidase activities in white adipose tissue of obese dogs fed a high-fat diet. J Physiol Biochem 62:113–123

    Article  CAS  PubMed  Google Scholar 

  27. Visentin V, Prevot D, De Saint Front VD, Morin-Cussac N, Thalamas C, Galitzky J, Valet P, Zorzano A, Carpene C (2004) Alteration of amine oxidase activity in the adipose tissue of obese subjects. Obes Res 12:547–555. https://doi.org/10.1038/oby.2004.62

    Article  CAS  PubMed  Google Scholar 

  28. Bour S, Caspar-Bauguil S, Iffiu-Soltesz Z, Nibbelink M, Cousin B, Miiluniemi M, Salmi M, Stolen C, Jalkanen S, Casteilla L, Penicaud L, Valet P, Carpéné C (2009) Semicarbazide-sensitive amine oxidase/vascular adhesion protein-1 deficiency reduces leukocyte infiltration into adipose tissue and favors fat deposition. Am J Pathol 174:1075–1083. https://doi.org/10.2353/ajpath.2009.080612

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kilkenny C, Browne W, Cuthill IC, Emerson M, Altman DG, Group NRRGW (2010) Animal research: reporting in vivo experiments: the ARRIVE guidelines. Br J Pharmacol 160:1577–1579. https://doi.org/10.1111/j.1476-5381.2010.00872.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gomez-Zorita S, Treguer K, Mercader J, Carpéné C (2013) Resveratrol directly affects in vitro lipolysis and glucose transport in human fat cells. J Physiol Biochem 69:585–593. https://doi.org/10.1007/s13105-012-0229-0

    Article  CAS  PubMed  Google Scholar 

  31. Carpéné C, Les F, Casedas G, Peiro C, Fontaine J, Chaplin A, Mercader J, Lopez V (2019) Resveratrol anti-obesity effects: rapid inhibition of adipocyte glucose utilization. Antioxidants (Basel) 8. https://doi.org/10.3390/antiox8030074

  32. Grès S, Canteiro S, Mercader J, Carpéné C (2013) Oxidation of high doses of serotonin favors lipid accumulation in mouse and human fat cells. Mol Nutr Food Res 57:1089–1099. https://doi.org/10.1002/mnfr.201200681

    Article  CAS  PubMed  Google Scholar 

  33. Zhou M, Panchuk-Voloshina N (1997) A one-step fluorometric method for the continuous measurement of monoamine oxidase activity. Anal Biochem 253:169–174. https://doi.org/10.1006/abio.1997.2392

    Article  CAS  PubMed  Google Scholar 

  34. Carpéné C, Abello V, Iffiu-Soltesz Z, Mercier N, Fève B, Valet P (2008) Limitation of adipose tissue enlargement in rats chronically treated with semicarbazide-sensitive amine oxidase and monoamine oxidase inhibitors. Pharmacol Res 57:426–434. https://doi.org/10.1016/j.phrs.2008.04.005

    Article  CAS  PubMed  Google Scholar 

  35. Carpéné C, Les F, Hasnaoui M, Biron S, Marceau P, Richard D, Galitzky J, Joanisse DR, Mauriège P (2016) Anatomical distribution of primary amine oxidase activity in four adipose depots and plasma of severely obese women with or without a dysmetabolic profile. J Physiol Biochem 73:475–486. https://doi.org/10.1007/s13105-016-0526-0

    Article  CAS  PubMed  Google Scholar 

  36. Stolen CM, Madanat R, Marti L, Kari S, Yegutkin GG, Sariola H, Zorzano A, Jalkanen S (2004) Semicarbazide sensitive amine oxidase overexpression has dual consequences: insulin mimicry and diabetes-like complications. FASEB J 18:702–704. https://doi.org/10.1096/fj.03-0562fje

    Article  CAS  PubMed  Google Scholar 

  37. Enrique-Tarancon G, Castan I, Morin N, Marti L, Abella A, Camps M, Casamitjana R, Palacin M, Testar X, Degerman E, Carpéné C, Zorzano A (2000) Substrates of semicarbazide-sensitive amine oxidase co-operate with vanadate to stimulate tyrosine phosphorylation of insulin-receptor-substrate proteins, phosphoinositide 3-kinase activity and GLUT4 translocation in adipose cells. Biochem J 350(Pt 1):171–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Morin N, Lizcano JM, Fontana E, Marti L, Smih F, Rouet P, Prévot D, Zorzano A, Unzeta M, Carpéné C (2001) Semicarbazide-sensitive amine oxidase substrates stimulate glucose transport and inhibit lipolysis in human adipocytes. J Pharmacol Exp Ther 297:563–572

    CAS  PubMed  Google Scholar 

  39. Trayhurn P (2005) Endocrine and signalling role of adipose tissue: new perspectives on fat. Acta Physiol Scand 184:285–293

    Article  CAS  PubMed  Google Scholar 

  40. Moldes M, Feve B, Pairault J (1999) Molecular cloning of a major mRNA species in murine 3T3 adipocyte lineage. Differentiation-dependent expression, regulation, and identification as semicarbazide-sensitive amine oxidase. J Biol Chem 274:9515–9523

    Article  CAS  PubMed  Google Scholar 

  41. Zhang S, Wang L, Zan L (2019) Investigation into the underlying molecular mechanisms of white adipose tissue through comparative transcriptome analysis of multiple tissues. Mol Med Rep 19:959–966. https://doi.org/10.3892/mmr.2018.9740

    Article  CAS  PubMed  Google Scholar 

  42. Zhou Y, Wu S, Mao J, Li Z (2018) Bioproduction of benzylamine from renewable feedstocks via a nine-step artificial enzyme cascade and engineered metabolic pathways. Chem Sus Chem 11:2221–2228. https://doi.org/10.1002/cssc.201800709

    Article  CAS  Google Scholar 

  43. Fontana E, Boucher J, Marti L, Lizcano JM, Testar X, Zorzano A, Carpene C (2001) Amine oxidase substrates mimic several of the insulin effects on adipocyte differentiation in 3T3 F442A cells. Biochem J 356:769–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Grès S, Bour S, Valet P, Carpéné C (2012) Benzylamine antihyperglycemic effect is abolished by AOC3 gene invalidation in mice but not rescued by semicarbazide-sensitive amine oxidase expression under the control of aP2 promoter. J Physiol Biochem 68:651–662. https://doi.org/10.1007/s13105-012-0171-1

    Article  CAS  PubMed  Google Scholar 

  45. Reilly SM, Ahmadian M, Zamarron BF, Chang L, Uhm M, Poirier B, Peng X, Krause DM, Korytnaya E, Neidert A, Liddle C, Yu RT, Lumeng CN, Oral EA, Downes M, Evans RM, Saltiel AR (2015) A subcutaneous adipose tissue-liver signalling axis controls hepatic gluconeogenesis. Nat Commun 6:6047. https://doi.org/10.1038/ncomms7047

    Article  CAS  PubMed  Google Scholar 

  46. Forest C, Joffin N, Jaubert AM, Noirez P (2016) What induces watts in WAT? Adipocyte 5:136–152. https://doi.org/10.1080/21623945.2016.1187345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Iffiu-Soltesz Z, Wanecq E, Lomba A, Portillo MP, Pellati F, Szoko E, Bour S, Woodley J, Milagro FI, Alfredo Martinez J, Valet P, Carpéné C (2010) Chronic benzylamine administration in the drinking water improves glucose tolerance, reduces body weight gain and circulating cholesterol in high-fat diet-fed mice. Pharmacol Res 61:355–363. https://doi.org/10.1016/j.phrs.2009.12.014

    Article  CAS  PubMed  Google Scholar 

  48. Bour S, Visentin V, Prevot D, Daviaud D, Saulnier-Blache JS, Guigne C, Valet P, Carpéné C (2005) Effects of oral administration of benzylamine on glucose tolerance and lipid metabolism in rats. J Physiol Biochem 61:371–379

    Article  CAS  PubMed  Google Scholar 

  49. Wang SH, Yu TY, Hung CS, Yang CY, Lin MS, Su CY, Chen YL, Kao HL, Chuang LM, Tsai FC, Li HY (2018) Inhibition of semicarbazide-sensitive amine oxidase reduces atherosclerosis in cholesterol-fed New Zealand white rabbits. Sci Rep 8:9249. https://doi.org/10.1038/s41598-018-27551-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang SH, Yu TY, Tsai FC, Weston CJ, Lin MS, Hung CS, Kao HL, Li YI, Sole M, Unzeta M, Chen YL, Chuang LM, Li HY (2018) Inhibition of semicarbazide-sensitive amine oxidase reduces atherosclerosis in apolipoprotein E-deficient mice. Transl Res 197:12–31. https://doi.org/10.1016/j.trsl.2018.03.001

    Article  CAS  PubMed  Google Scholar 

  51. Mercader J, Sabater A, Le Gonidec S, Decaunes P, Chaplin A, Gomez-Zorita S, Milagro F, Carpéné C (2019) Oral phenelzine treatment mitigates metabolic disturbances in mice fed a high-fat diet. J Pharmacol Exp Ther 371:555–566. https://doi.org/10.1124/jpet.119.259895

    Article  CAS  PubMed  Google Scholar 

  52. Souto RP, Vallega G, Wharton J, Vinten J, Tranum-Jensen J, Pilch PF (2003) Immunopurification and characterization of rat adipocyte caveolae suggest their dissociation from insulin signaling. J Biol Chem 278:18321–18329. https://doi.org/10.1074/jbc.M211541200

    Article  CAS  PubMed  Google Scholar 

  53. Le Lay S, Hajduch E, Lindsay MR, Le Liepvre X, Thiele C, Ferre P, Parton RG, Kurzchalia T, Simons K, Dugail I (2006) Cholesterol-induced caveolin targeting to lipid droplets in adipocytes: a role for caveolar endocytosis. Traffic 7:549–561. https://doi.org/10.1111/j.1600-0854.2006.00406.x

    Article  CAS  PubMed  Google Scholar 

  54. Kriaa A, Bourgin M, Potiron A, Mkaouar H, Jablaoui A, Gerard P, Maguin E, Rhimi M (2019) Microbial impact on cholesterol and bile acid metabolism: current status and future prospects. J Lipid Res 60:323–332. https://doi.org/10.1194/jlr.R088989

    Article  CAS  PubMed  Google Scholar 

  55. Carpéné C, Grès S, Rascalou S (2013) The amine oxidase inhibitor phenelzine limits lipogenesis in adipocytes without inhibiting insulin action on glucose uptake. J Neural Transm (Vienna) 120:997–1003. https://doi.org/10.1007/s00702-012-0951-3

    Article  CAS  Google Scholar 

  56. Chiche F, Le Guillou M, Chetrite G, Lasnier F, Dugail I, Carpéné C, Moldes M, Feve B (2009) Antidepressant phenelzine alters differentiation of cultured human and mouse preadipocytes. Mol Pharmacol 75:1052–1061. https://doi.org/10.1124/mol.108.052563

    Article  CAS  PubMed  Google Scholar 

  57. Carroll JF, King JW, Cohen JS (2004) Hydralazine treatment alters body composition in the rabbit model of obesity. Acta Physiol Scand 181:183–191. https://doi.org/10.1111/j.1365-201X.2004.01283.x

    Article  CAS  PubMed  Google Scholar 

  58. Mercader J, Iffiu-Soltesz Z, Bour S, Carpéné C (2011) Oral administration of semicarbazide limits weight gain together with inhibition of fat deposition and of primary amine oxidase activity in adipose tissue. J Obes 2011:475786–475710. https://doi.org/10.1155/2011/475786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yu PH, Wang M, Fan H, Deng Y, Gubisne-Haberle D (2004) Involvement of SSAO-mediated deamination in adipose glucose transport and weight gain in obese diabetic KKAy mice. Am J Physiol Endocrinol Metab 286:E634–E641. https://doi.org/10.1152/ajpendo.00272.2003

    Article  CAS  PubMed  Google Scholar 

  60. Zhang M, Liu L, Zhi F, Niu P, Yang M, Zhu X, Diao Y, Li Y, Wang J, Zhao Y (2016) Inactivation of semicarbazide-sensitive amine oxidase induces the phenotypic switch of smooth muscle cells and aggravates the development of atherosclerotic lesions. Atherosclerosis 249:76–82. https://doi.org/10.1016/j.atherosclerosis.2016.03.039

    Article  CAS  PubMed  Google Scholar 

  61. Carpéné C, Boulet N, Chaplin A, Mercader J (2019) Past, present and future anti-obesity effects of flavin-containing and/or copper-containing amine oxidase inhibitors. Medicines (Basel) 6. https://doi.org/10.3390/medicines6010009

  62. Papukashvili D, Rcheulishvili N, Deng Y (2020) Attenuation of weight gain and prevention of associated pathologies by inhibiting SSAO. Nutrients 12:E184. https://doi.org/10.3390/nu12010184

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to all the other participants of the TUNEUP project and to the members of CTPIOD mini-network (http://obesitydiabetesinctp.weebly.com) for the helpful discussions. All our thanks to Iffiu-Soltesz Z., Mercader J. and Prévot D. (I2MC, Toulouse, France) for facilitating phenotypic explorations.

Funding

Preliminary part of this study was supported by European grants of the QLG1-CT-1999-00295 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Carpéné.

Ethics declarations

All animal procedures complied with the principles established at INSERM and were performed in compliance with the Animal Research: Reporting of In Vivo Experiments (ARRIVE) guidelines. All protocols were approved by the CREFRE Ethics Committee (Centre Régional d’Exploration Fonctionnelle et Ressources Expérimentales, Toulouse, France) with agreement number C31 55507.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Keypoints

• Aoc3 encodes for vascular adhesion protein/semicarbazide-sensitive amine oxidase.

VAP-1/SSAO is a glycoprotein involved in lymphocyte trafficking and amine oxidation.

Either Aoc3 knock-out or amine oxidase invalidation leads to obesity in mouse.

Fat mass increases without inflammation but with possible changes in blood cholesterol.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jargaud, V., Bour, S., Tercé, F. et al. Obesity of mice lacking VAP-1/SSAO by Aoc3 gene deletion is reproduced in mice expressing a mutated vascular adhesion protein-1 (VAP-1) devoid of amine oxidase activity. J Physiol Biochem 77, 141–154 (2021). https://doi.org/10.1007/s13105-020-00756-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-020-00756-y

Keywords

Navigation