Skip to main content

Advertisement

Log in

Methylprednisolone Reduces Persistent Post-ischemic Inflammation in a Rat Hypoxia-Ischemia Model of Perinatal Stroke

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

In perinatal stroke, the initial injury results in a chronic inflammatory response caused by the release of proinflammatory cytokines, gliosis and microglia activation. This chronic and ongoing inflammatory response exacerbates the brain injury, often resulting in encephalopathy and cerebral palsy (CP). Using a neonatal rat model of hypoxia-ischemia (HI) at postnatal day (P)7, we demonstrated that chronic inflammation is persistent and continues into the tertiary phase of perinatal stroke and can be attenuated by the administration of methylprednisolone sodium-succinate (MPSS, 30 mg/kg), a US Food and Drug Administration (FDA) approved anti-inflammatory agent. The inflammatory response was assessed by real-time quantitative PCR and ELISA for markers of inflammation (CCL3, CCL5, IL18 and TNFα). Structural changes were evaluated by histology (LFB/H&E), while cellular changes were assessed by Iba-1, ED1, GFAP, NeuN, Olig2 and CC1 immunostaining. Functional deficits were assessed with the Cylinder test and Ladder Rung Walking test. MPSS was injected 14 days after HI insult to attenuate chronic inflammation. In neonatal conditions such as CP, P21 is a clinically relevant time-point in rodents, corresponding developmentally to a 2-year-old human. Administration of MPSS resulted in reduced structural damage (corpus callosum, cortex, hippocampus, striatum), gliosis and reactive microglia and partial restoration of the oligodendrocyte population. Furthermore, significant behavioural recovery was observed. In conclusion, we demonstrated that administration of MPSS during the tertiary phase of perinatal stroke results in attenuation of the chronic inflammatory response, leading to pathophysiological and functional recovery. This work validates the high clinical impact of MPSS to treat neonatal conditions linked to chronic inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. de Veber GA, Kirton A, Booth FA, Yager JY, Wirrell EC, Wood E, et al. Epidemiology and outcomes of arterial ischemic stroke in children: the Canadian Pediatric Ischemic Stroke Registry. Pediatr Neurol. 2017;69:58–70. https://doi.org/10.1016/j.pediatrneurol.2017.01.016.

    Article  Google Scholar 

  2. Giudice C, Rogers EE, Johnson BC, Glass HC, Shapiro KA. Neuroanatomical correlates of sensory deficits in children with neonatal arterial ischemic stroke. Dev Med Child Neurol. 2018. https://doi.org/10.1111/dmcn.14101.

  3. Nelson KB. Perinatal ischemic stroke. Stroke. 2007;38(2 Suppl):742–5. https://doi.org/10.1161/01.STR.0000247921.97794.5e.

    Article  PubMed  Google Scholar 

  4. Wagenaar N, Martinez-Biarge M, van der Aa NE, van Haastert IC, Groenendaal F, Benders M, et al. Neurodevelopment after perinatal arterial ischemic stroke. Pediatrics. 2018;142(3). https://doi.org/10.1542/peds.2017-4164.

  5. Kirton A, Deveber G. Life after perinatal stroke. Stroke. 2013;44(11):3265–71. https://doi.org/10.1161/strokeaha.113.000739.

    Article  PubMed  Google Scholar 

  6. Mineyko A, Kirton A. The black box of perinatal ischemic stroke pathogenesis. J Child Neurol. 2011;26(9):1154–62. https://doi.org/10.1177/0883073811408312.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hagberg H, David Edwards A, Groenendaal F. Perinatal brain damage: the term infant. Neurobiol Dis. 2016;92(Pt A):102–12. https://doi.org/10.1016/j.nbd.2015.09.011.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Van Steenwinckel J, Schang AL, Sigaut S, Chhor V, Degos V, Hagberg H, et al. Brain damage of the preterm infant: new insights into the role of inflammation. Biochem Soc Trans. 2014;42(2):557–63. https://doi.org/10.1042/bst20130284.

    Article  PubMed  Google Scholar 

  9. Fleiss B, Gressens P. Tertiary mechanisms of brain damage: a new hope for treatment of cerebral palsy? Lancet Neurol. 2012;11(6):556–66. https://doi.org/10.1016/s1474-4422(12)70058-3.

    Article  PubMed  Google Scholar 

  10. Ek CJ, D’Angelo B, Baburamani AA, Lehner C, Leverin AL, Smith PL, et al. Brain barrier properties and cerebral blood flow in neonatal mice exposed to cerebral hypoxia-ischemia. J Cereb Blood Flow Metab. 2015;35(5):818–27. https://doi.org/10.1038/jcbfm.2014.255.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Lee WLA, Michael-Titus AT, Shah DK. Hypoxic-ischaemic encephalopathy and the blood-brain barrier in neonates. Dev Neurosci. 2017;39(1–4):49–58. https://doi.org/10.1159/000467392.

    Article  PubMed  CAS  Google Scholar 

  12. Rumajogee P, Bregman T, Miller SP, Yager JY, Fehlings MG. Rodent hypoxia-ischemia models for cerebral palsy research: a systematic review. Front Neurol. 2016;7:57. https://doi.org/10.3389/fneur.2016.00057.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hagberg H, Mallard C, Ferriero DM, Vannucci SJ, Levison SW, Vexler ZS, et al. The role of inflammation in perinatal brain injury. Nat Rev Neurol. 2015;11(4):192–208. https://doi.org/10.1038/nrneurol.2015.13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Back SA. White matter injury in the preterm infant: pathology and mechanisms. Acta Neuropathol. 2017;134(3):331–49. https://doi.org/10.1007/s00401-017-1718-6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Fern RF, Matute C, Stys PK. White matter injury: ischemic and nonischemic. Glia. 2014;62(11):1780–9. https://doi.org/10.1002/glia.22722.

    Article  PubMed  Google Scholar 

  16. Liu F, McCullough LD. Inflammatory responses in hypoxic ischemic encephalopathy. Acta Pharmacol Sin. 2013;34(9):1121–30. https://doi.org/10.1038/aps.2013.89.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Favrais G, van de Looij Y, Fleiss B, Ramanantsoa N, Bonnin P, Stoltenburg-Didinger G, et al. Systemic inflammation disrupts the developmental program of white matter. Ann Neurol. 2011;70(4):550–65. https://doi.org/10.1002/ana.22489.

    Article  PubMed  CAS  Google Scholar 

  18. Ramaswamy V, Miller SP, Barkovich AJ, Partridge JC, Ferriero DM. Perinatal stroke in term infants with neonatal encephalopathy. Neurology. 2004;62(11):2088–91. https://doi.org/10.1212/01.WNL.0000129909.77753.C4.

    Article  PubMed  CAS  Google Scholar 

  19. Chalak LF, Sanchez PJ, Adams-Huet B, Laptook AR, Heyne RJ, Rosenfeld CR. Biomarkers for severity of neonatal hypoxic-ischemic encephalopathy and outcomes in newborns receiving hypothermia therapy. J Pediatr. 2014;164(3):468–74.e1. https://doi.org/10.1016/j.jpeds.2013.10.067.

    Article  PubMed  CAS  Google Scholar 

  20. Bhalala US, Koehler RC, Kannan S. Neuroinflammation and neuroimmune dysregulation after acute hypoxic-ischemic injury of developing brain. Front Pediatr. 2014;2:144. https://doi.org/10.3389/fped.2014.00144.

    Article  PubMed  Google Scholar 

  21. Bona E, Andersson A-L, Blomgren K, Gilland E, Puka-Sundvall M, Gustafson K, et al. Chemokine and inflammatory cell response to hypoxia-ischemia in immature rats. Pediatr Res. 1999;45:500. https://doi.org/10.1203/00006450-199904010-00008.

    Article  PubMed  CAS  Google Scholar 

  22. Hedtjarn M, Mallard C, Arvidsson P, Hagberg H. White matter injury in the immature brain: role of interleukin-18. Neurosci Lett. 2005;373(1):16–20. https://doi.org/10.1016/j.neulet.2004.09.062.

    Article  PubMed  CAS  Google Scholar 

  23. Hedtjarn M, Leverin AL, Eriksson K, Blomgren K, Mallard C, Hagberg H. Interleukin-18 involvement in hypoxic-ischemic brain injury. J Neurosci. 2002;22(14):5910–9.

    Article  CAS  Google Scholar 

  24. Daneyemez M, Kurt E, Cosar A, Yuce E, Ide T. Methylprednisolone and vitamin E therapy in perinatal hypoxic-ischemic brain damage in rats. Neuroscience. 1999;92(2):693–7.

    Article  CAS  Google Scholar 

  25. Gonzalez-Rodriguez PJ, Li Y, Martinez F, Zhang L. Dexamethasone protects neonatal hypoxic-ischemic brain injury via L-PGDS-dependent PGD2-DP1-pERK signaling pathway. PLoS One. 2014;9(12):e114470. https://doi.org/10.1371/journal.pone.0114470.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Harding B, Conception K, Li Y, Zhang L. Glucocorticoids protect neonatal rat brain in model of hypoxic-ischemic encephalopathy (HIE). Int J Mol Sci. 2016;18(1). https://doi.org/10.3390/ijms18010017.

  27. Concepcion KR, Zhang L. Corticosteroids and perinatal hypoxic-ischemic brain injury. Drug Discov Today. 2018. https://doi.org/10.1016/j.drudis.2018.05.019.

  28. Cheng S, Gao W, Xu X, Fan H, Wu Y, Li F, et al. Methylprednisolone sodium succinate reduces BBB disruption and inflammation in a model mouse of intracranial haemorrhage. Brain Res Bull. 2016;127:226–33. https://doi.org/10.1016/j.brainresbull.2016.10.007.

    Article  PubMed  CAS  Google Scholar 

  29. Kim JS, Chopp M, Gautam SC. High dose methylprednisolone therapy reduces expression of JE/MCP-1 mRNA and macrophage accumulation in the ischemic rat brain. J Neurol Sci. 1995;128(1):28–35.

    Article  CAS  Google Scholar 

  30. Hall ED. Methylprednisolone for the treatment of patients with acute spinal cord injuries: a propensity score-matched cohort study from a Canadian Multi-Center Spinal Cord Injury Registry. J Neurotrauma. 2016;33(10):972–4. https://doi.org/10.1089/neu.2016.4473.

    Article  PubMed  Google Scholar 

  31. Cooper SD, Felkins K, Baker TE, Hale TW. Transfer of methylprednisolone into breast milk in a mother with multiple sclerosis. J Hum Lact. 2015;31(2):237–9. https://doi.org/10.1177/0890334415570970.

    Article  PubMed  Google Scholar 

  32. Fehlings MG, Wilson JR, Harrop JS, Kwon BK, Tetreault LA, Arnold PM, et al. Efficacy and safety of methylprednisolone sodium succinate in acute spinal cord injury: a systematic review. Glob Spine J. 2017;7(3 Suppl):116S–37S. https://doi.org/10.1177/2192568217706366.

    Article  Google Scholar 

  33. Fernandes Moca Trevisani V, Castro AA, Ferreira Neves Neto J, Atallah AN. Cyclophosphamide versus methylprednisolone for treating neuropsychiatric involvement in systemic lupus erythematosus. Cochrane Database Syst Rev. 2013;(2):CD002265. https://doi.org/10.1002/14651858.CD002265.pub3.

  34. Hall ED. The neuroprotective pharmacology of methylprednisolone. J Neurosurg. 1992;76(1):13–22. https://doi.org/10.3171/jns.1992.76.1.0013.

    Article  PubMed  CAS  Google Scholar 

  35. Oudega M, Vargas CG, Weber AB, Kleitman N, Bunge MB. Long-term effects of methylprednisolone following transection of adult rat spinal cord. Eur J Neurosci. 1999;11(7):2453–64.

    Article  CAS  Google Scholar 

  36. Bansal LR. Therapeutic effect of steroids in osmotic demyelination of infancy. Child Neurol Open. 2018;5:2329048x18770576. https://doi.org/10.1177/2329048x18770576.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Graham HK, Rosenbaum P, Paneth N, Dan B, Lin JP, Damiano DL, et al. Cerebral palsy. Nat Rev Dis Prim. 2016;2:15082. https://doi.org/10.1038/nrdp.2015.82.

    Article  PubMed  Google Scholar 

  38. Hubermann L, Boychuck Z, Shevell M, Majnemer A. Age at referral of children for initial diagnosis of cerebral palsy and rehabilitation: current practices. J Child Neurol. 2016;31(3):364–9. https://doi.org/10.1177/0883073815596610.

    Article  PubMed  Google Scholar 

  39. Semple BD, Blomgren K, Gimlin K, Ferriero DM, Noble-Haeusslein LJ. Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species. Prog Neurobiol. 2013:106, 1–7, 16. https://doi.org/10.1016/j.pneurobio.2013.04.001.

  40. Rice JE 3rd, Vannucci RC, Brierley JB. The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol. 1981;9(2):131–41. https://doi.org/10.1002/ana.410090206.

    Article  PubMed  Google Scholar 

  41. Vannucci RC, Vannucci SJ. Perinatal hypoxic-ischemic brain damage: evolution of an animal model. Dev Neurosci. 2005;27(2–4):81–6. https://doi.org/10.1159/000085978.

    Article  PubMed  CAS  Google Scholar 

  42. Rumajogee P, Altamentova S, Li L, Li J, Wang J, Kuurstra A, et al. Exogenous neural precursor cell transplantation results in structural and functional recovery in a hypoxic-ischemic hemiplegic mouse model. eNeuro. 2018;5(5). https://doi.org/10.1523/eneuro.0369-18.2018.

  43. Kalayci O, Cataltepe S, Cataltepe O. The effect of bolus methylprednisolone in prevention of brain edema in hypoxic ischemic brain injury: an experimental study in 7-day-old rat pups. Brain Res. 1992;569(1):112–6.

    Article  CAS  Google Scholar 

  44. Yu Y, Matsuyama Y, Nakashima S, Yanase M, Kiuchi K, Ishiguro N. Effects of MPSS and a potent iNOS inhibitor on traumatic spinal cord injury. Neuroreport. 2004;15(13):2103–7.

    Article  CAS  Google Scholar 

  45. Braughler JM, Hall ED. Effects of multi-dose methylprednisolone sodium succinate administration on injured cat spinal cord neurofilament degradation and energy metabolism. J Neurosurg. 1984;61(2):290–5. https://doi.org/10.3171/jns.1984.61.2.0290.

    Article  PubMed  CAS  Google Scholar 

  46. Jing Y, Hou Y, Song Y, Yin J. Methylprednisolone improves the survival of new neurons following transient cerebral ischemia in rats. Acta Neurobiol Exp. 2012;72(3):240–52.

    Google Scholar 

  47. Braughler JM, Hall ED. Correlation of methylprednisolone levels in cat spinal cord with its effects on (Na+ + K+)-ATPase, lipid peroxidation, and alpha motor neuron function. J Neurosurg. 1982;56(6):838–44. https://doi.org/10.3171/jns.1982.56.6.0838.

    Article  PubMed  CAS  Google Scholar 

  48. Hall ED, Braughler JM, McCall JM. Antioxidant effects in brain and spinal cord injury. J Neurotrauma. 1992;9(Suppl 1):S165–72.

    PubMed  Google Scholar 

  49. Hall ED, Wolf DL, Braughler JM. Effects of a single large dose of methylprednisolone sodium succinate on experimental posttraumatic spinal cord ischemia. Dose-response and time-action analysis. J Neurosurg. 1984;61(1):124–30. https://doi.org/10.3171/jns.1984.61.1.0124.

    Article  PubMed  CAS  Google Scholar 

  50. Vidal PM, Ulndreaj A, Badner A, Hong J, Fehlings MG. Methylprednisolone treatment enhances early recovery following surgical decompression for degenerative cervical myelopathy without compromise to the systemic immune system. J Neuroinflammation. 2018;15(1):222. https://doi.org/10.1186/s12974-018-1257-7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Forgione N, Chamankhah M, Fehlings MG. A mouse model of bilateral cervical contusion-compression spinal cord injury. J Neurotrauma. 2017;34(6):1227–39. https://doi.org/10.1089/neu.2016.4708.

    Article  PubMed  Google Scholar 

  52. Cai J, Kang Z, Liu WW, Luo X, Qiang S, Zhang JH, et al. Hydrogen therapy reduces apoptosis in neonatal hypoxia-ischemia rat model. Neurosci Lett. 2008;441(2):167–72. https://doi.org/10.1016/j.neulet.2008.05.077.

    Article  PubMed  CAS  Google Scholar 

  53. Ruff CA, Ye H, Legasto JM, Stribbell NA, Wang J, Zhang L, et al. Effects of adult neural precursor-derived myelination on axonal function in the perinatal congenitally dysmyelinated brain: optimizing time of intervention, developing accurate prediction models, and enhancing performance. J Neurosci. 2013;33(29):11899–915. https://doi.org/10.1523/JNEUROSCI.1131-13.2013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Karimi-Abdolrezaee S, Eftekharpour E, Wang J, Schut D, Fehlings MG. Synergistic effects of transplanted adult neural stem/progenitor cells, chondroitinase, and growth factors promote functional repair and plasticity of the chronically injured spinal cord. J Neurosci. 2010;30(5):1657–76. https://doi.org/10.1523/JNEUROSCI.3111-09.2010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Beldick SR, Hong J, Altamentova S, Khazaei M, Hundal A, Zavvarian MM, et al. Severe-combined immunodeficient rats can be used to generate a model of perinatal hypoxic-ischemic brain injury to facilitate studies of engrafted human neural stem cells. PLoS One. 2018;13(11):e0208105. https://doi.org/10.1371/journal.pone.0208105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Goto N. Discriminative staining methods for the nervous system: luxol fast blue--periodic acid-Schiff--hematoxylin triple stain and subsidiary staining methods. Stain Technol. 1987;62(5):305–15.

    Article  CAS  Google Scholar 

  57. Metz GA, Whishaw IQ. Cortical and subcortical lesions impair skilled walking in the ladder rung walking test: a new task to evaluate fore- and hindlimb stepping, placing, and co-ordination. J Neurosci Methods. 2002;115(2):169–79.

    Article  Google Scholar 

  58. Fleiss B, Tann CJ, Degos V, Sigaut S, Van Steenwinckel J, Schang AL, et al. Inflammation-induced sensitization of the brain in term infants. Dev Med Child Neurol. 2015;57(Suppl 3):17–28. https://doi.org/10.1111/dmcn.12723.

    Article  PubMed  Google Scholar 

  59. Moretti R, Pansiot J, Bettati D, Strazielle N, Ghersi-Egea JF, Damante G, et al. Blood-brain barrier dysfunction in disorders of the developing brain. Front Neurosci. 2015;9:40. https://doi.org/10.3389/fnins.2015.00040.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Shrivastava K, Llovera G, Recasens M, Chertoff M, Gimenez-Llort L, Gonzalez B, et al. Temporal expression of cytokines and signal transducer and activator of transcription factor 3 activation after neonatal hypoxia/ischemia in mice. Dev Neurosci. 2013;35(2–3):212–25. https://doi.org/10.1159/000348432.

    Article  PubMed  CAS  Google Scholar 

  61. Ikeda T, Mishima K, Aoo N, Liu AX, Egashira N, Iwasaki K, et al. Dexamethasone prevents long-lasting learning impairment following a combination of lipopolysaccharide and hypoxia-ischemia in neonatal rats. Am J Obstet Gynecol. 2005;192(3):719–26. https://doi.org/10.1016/j.ajog.2004.12.048.

    Article  PubMed  CAS  Google Scholar 

  62. Benveniste EN. Inflammatory cytokines within the central nervous system: sources, function, and mechanism of action. Am J Phys. 1992;263(1 Pt 1):C1–16. https://doi.org/10.1152/ajpcell.1992.263.1.C1.

    Article  CAS  Google Scholar 

  63. Benveniste EN. Cytokines: influence on glial cell gene expression and function. Chem Immunol. 1992;52:106–53.

    PubMed  CAS  Google Scholar 

  64. Ramesh G, MacLean AG, Philipp MT. Cytokines and chemokines at the crossroads of neuroinflammation, neurodegeneration, and neuropathic pain. Mediat Inflamm. 2013;2013:480739. https://doi.org/10.1155/2013/480739.

    Article  CAS  Google Scholar 

  65. Okada S, Nakamura M, Mikami Y, Shimazaki T, Mihara M, Ohsugi Y, et al. Blockade of interleukin-6 receptor suppresses reactive astrogliosis and ameliorates functional recovery in experimental spinal cord injury. J Neurosci Res. 2004;76(2):265–76. https://doi.org/10.1002/jnr.20044.

    Article  PubMed  CAS  Google Scholar 

  66. Donnelly DJ, Popovich PG. Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Exp Neurol. 2008;209(2):378–88. https://doi.org/10.1016/j.expneurol.2007.06.009.

    Article  PubMed  CAS  Google Scholar 

  67. Taib T, Leconte C, Van Steenwinckel J, Cho AH, Palmier B, Torsello E, et al. Neuroinflammation, myelin and behavior: temporal patterns following mild traumatic brain injury in mice. PLoS One. 2017;12(9):e0184811. https://doi.org/10.1371/journal.pone.0184811.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Ashwell JD, Lu FW, Vacchio MS. Glucocorticoids in T cell development and function*. Annu Rev Immunol. 2000;18:309–45. https://doi.org/10.1146/annurev.immunol.18.1.309.

    Article  PubMed  CAS  Google Scholar 

  69. Mathian A, Jouenne R, Chader D, Cohen-Aubart F, Haroche J, Fadlallah J, et al. Regulatory T cell responses to high-dose methylprednisolone in active systemic lupus Erythematosus. PLoS One. 2015;10(12):e0143689. https://doi.org/10.1371/journal.pone.0143689.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Sbiera S, Dexneit T, Reichardt SD, Michel KD, van den Brandt J, Schmull S, et al. Influence of short-term glucocorticoid therapy on regulatory T cells in vivo. PLoS One. 2011;6(9):e24345. https://doi.org/10.1371/journal.pone.0024345.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Jobe AH. Glucocorticoids in perinatal medicine: misguided rockets? J Pediatr. 2000;137(1):1–3. https://doi.org/10.1067/mpd.2000.107801.

    Article  PubMed  CAS  Google Scholar 

  72. Baud O, Sola A. Corticosteroids in perinatal medicine: how to improve outcomes without affecting the developing brain? Semin Fetal Neonatal Med. 2007;12(4):273–9. https://doi.org/10.1016/j.siny.2007.01.025.

    Article  PubMed  Google Scholar 

  73. Bennet L, Davidson JO, Koome M, Gunn AJ. Glucocorticoids and preterm hypoxic-ischemic brain injury: the good and the bad. J Pregnancy. 2012;2012:751694. https://doi.org/10.1155/2012/751694.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Damsted SK, Born AP, Paulson OB, Uldall P. Exogenous glucocorticoids and adverse cerebral effects in children. Eur J Paediatr Neurol. 2011;15(6):465–77. https://doi.org/10.1016/j.ejpn.2011.05.002.

    Article  PubMed  Google Scholar 

  75. Tuor UI, Chumas PD, Del Bigio MR. Prevention of hypoxic-ischemic damage with dexamethasone is dependent on age and not influenced by fasting. Exp Neurol. 1995;132(1):116–22. https://doi.org/10.1016/0014-4886(95)90065-9.

    Article  PubMed  CAS  Google Scholar 

  76. Aljebab F, Choonara I, Conroy S. Systematic review of the toxicity of short-course oral corticosteroids in children. Arch Dis Child. 2016;101(4):365–70. https://doi.org/10.1136/archdischild-2015-309522.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Baud O. Postnatal steroid treatment and brain development. Arch Dis Child Fetal Neonatal Ed. 2004;89(2):F96–100.

    Article  CAS  Google Scholar 

  78. O’Shea TM, Doyle LW. Perinatal glucocorticoid therapy and neurodevelopmental outcome: an epidemiologic perspective. Semin Neonatol. 2001;6(4):293–307. https://doi.org/10.1053/siny.2001.0065.

    Article  PubMed  Google Scholar 

  79. Malaeb SN, Stonestreet BS. Steroids and injury to the developing brain: net harm or net benefit? Clin Perinatol. 2014;41(1):191–208. https://doi.org/10.1016/j.clp.2013.09.006.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by the Kids Brain Health Network and Ontario Brain Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G. Fehlings.

Ethics declarations

Experimental procedures, animal use and care were approved by the Animal Care Committee at the University Health Network in accordance with the policies and procedures outlined by the Canadian Council of Animal Care.

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed. Experimental procedures, animal use and care were approved by the Animal Care Committee at the University Health Network in accordance with the policies and procedures outlined by the Canadian Council of Animal Care.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(PDF 10344 kb)

ESM 2

(DOCX 93 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altamentova, S., Rumajogee, P., Hong, J. et al. Methylprednisolone Reduces Persistent Post-ischemic Inflammation in a Rat Hypoxia-Ischemia Model of Perinatal Stroke. Transl. Stroke Res. 11, 1117–1136 (2020). https://doi.org/10.1007/s12975-020-00792-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-020-00792-2

Keywords

Navigation