Skip to main content

Advertisement

Log in

Therapeutic Role of a Cysteine Precursor, OTC, in Ischemic Stroke Is Mediated by Improved Proteostasis in Mice

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Oxidative stress aggravates brain injury following ischemia/reperfusion (I/R). We previously showed that ubiquilin-1 (Ubqln1), a ubiquitin-like protein, improves proteostasis and protects brains against oxidative stress and I/R-induced brain injury. Here, we demonstrate that a small molecule compound, L-2-oxothiazolidine-4-carboxylic acid (OTC) that functions as a precursor of cysteine, upregulated Ubqln1 and protected cells against oxygen-glucose deprivation–induced cell death in neuronal cultures. Further, the administration of OTC either at 1 h prior to ischemia or 3 h after the reperfusion significantly reduced brain infarct injury and improved behavioral outcomes in a stroke model. Administration of OTC also increased glutathione (GSH) level and decreased superoxide production, oxidized protein, and neuroinflammation levels in the penumbral cortex after I/R in the stroke mice. Furthermore, I/R reduced both Ubqln1 and the glutathione S-transferase protein levels, whereas OTC treatment restored both protein levels, which was associated with reduced ubiquitin-conjugated protein level. Interestingly, in the Ubqln1 knockout (KO) mice, OTC treatment showed reduced neuroprotection and increased ubiquitin-conjugated protein level when compared to the similarly treated non-KO mice following I/R, suggesting that OTC-medicated neuroprotection is, at least partially, Ubqln1-dependent. Thus, OTC is a potential therapeutic agent for stroke and possibly for other neurological disorders and its neuroprotection involves enhanced proteostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Donnan GA, Fisher M, Macleod M, Davis SM. Stroke. Lancet. 2008;371(9624):1612–23.

    PubMed  CAS  Google Scholar 

  2. Kasner SE, Grotta JC. Ischemic stroke. Neurol Clin. 1998;16(2):355–72.

    PubMed  CAS  Google Scholar 

  3. Barber PA, Zhang J, Demchuk AM, Hill MD, Buchan AM. Why are stroke patients excluded from TPA therapy? An analysis of patient eligibility. Neurology. 2001;56(8):1015–20.

    PubMed  CAS  Google Scholar 

  4. Cronin CA. Intravenous tissue plasminogen activator for stroke: a review of the ECASS III results in relation to prior clinical trials. J Emerg Med. 2010;38(1):99–105.

    PubMed  Google Scholar 

  5. Armstead WM, Ganguly K, Kiessling JW, Riley J, Chen XH, Smith DH, et al. Signaling, delivery and age as emerging issues in the benefit/risk ratio outcome of tPA for treatment of CNS ischemic disorders. J Neurochem. 2010;113(2):303–12.

    PubMed  PubMed Central  CAS  Google Scholar 

  6. Shi HL, Liu KJ. Cerebral tissue oxygenation and oxidative brain injury during ischemia and reperfusion. Front Biosci-Landmrk. 2007;12:1318–28.

    CAS  Google Scholar 

  7. Forman HJ, Zhang H, Rinna A. Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol Asp Med. 2009;30(1–2):1–12.

    CAS  Google Scholar 

  8. Mari M, Morales A, Colell A, Garcia-Ruiz C, Fernandez-Checa JC. Mitochondrial glutathione, a key survival antioxidant. Antioxid Redox Signal. 2009;11(11):2685–700.

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Redza-Dutordoir M, Averill-Bates DA. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta. 2016;1863(12):2977–92.

    PubMed  CAS  Google Scholar 

  10. Schulz JB, Lindenau J, Seyfried J, Dichgans J. Glutathione, oxidative stress and neurodegeneration. Eur J Biochem. 2000;267(16):4904–11.

    PubMed  CAS  Google Scholar 

  11. Choi J, Liu RM, Kundu RK, Sangiorgi F, Wu W, Maxson R, et al. Molecular mechanism of decreased glutathione content in human immunodeficiency virus type 1 Tat-transgenic mice. J Biol Chem. 2000;275(5):3693–8.

    PubMed  CAS  Google Scholar 

  12. Namba K, Takeda Y, Sunami K, Hirakawa M. Temporal profiles of the levels of endogenous antioxidants after four-vessel occlusion in rats. J Neurosurg Anesthesiol. 2001;13(2):131–7.

    PubMed  CAS  Google Scholar 

  13. Park EM, Choi JH, Park JS, Han MY, Park YM. Measurement of glutathione oxidation and 8-hydroxy-2′-deoxyguanosine accumulation in the gerbil hippocampus following global ischemia. Brain Res Protocol. 2000;6(1–2):25–32.

    CAS  Google Scholar 

  14. Yabuki Y, Fukunaga K. Oral administration of glutathione improves memory deficits following transient brain ischemia by reducing brain oxidative stress. Neuroscience. 2013;250:394–407.

    PubMed  CAS  Google Scholar 

  15. Smeyne M, Smeyne RJ. Glutathione metabolism and Parkinson’s disease. Free Radic Biol Med. 2013;62:13–25.

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Ko HS, Uehara T, Tsuruma K, Nomura Y. Ubiquilin interacts with ubiquitylated proteins and proteasome through its ubiquitin-associated and ubiquitin-like domains. FEBS Lett. 2004;566(1–3):110–4.

    PubMed  Google Scholar 

  17. Wang H, Monteiro MJ. Ubiquilin interacts and enhances the degradation of expanded-polyglutamine proteins. Biochem Biophys Res Commun. 2007;360(2):423–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  18. Stieren ES, El Ayadi A, Xiao Y, Siller E, Landsverk ML, Oberhauser AF, et al. Ubiquilin-1 is a molecular chaperone for the amyloid precursor protein. J Biol Chem. 2011;286(41):35689–98.

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Itakura E, Zavodszky E, Shao S, Wohlever ML, Keenan RJ, Hegde RS. Ubiquilins chaperone and triage mitochondrial membrane proteins for degradation. Mol Cell. 2016;63(1):21–33.

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Rothenberg C, Srinivasan D, Mah L, Kaushik S, Peterhoff CM, Ugolino J, et al. Ubiquilin functions in autophagy and is degraded by chaperone-mediated autophagy. Hum Mol Genet. 2010;19(16):3219–32.

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Lee DY, Arnott D, Brown EJ. Ubiquilin4 is an adaptor protein that recruits Ubiquilin1 to the autophagy machinery. EMBO Rep. 2013;14(4):373–81.

    PubMed  CAS  Google Scholar 

  22. Liu Y, Lu L, Hettinger CL, Dong G, Zhang D, Rezvani K, et al. Ubiquilin-1 protects cells from oxidative stress and ischemic stroke caused tissue injury in mice. J Neurosci. 2014;34(8):2813–21.

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Oppenheimer S. GM1 ganglioside therapy in acute ischemic stroke. Stroke. 1990;21(5):825.

    PubMed  CAS  Google Scholar 

  24. Liu Z, Ruan Y, Yue W, Zhu Z, Hartmann T, Beyreuther K, et al. GM1 up-regulates Ubiquilin 1 expression in human neuroblastoma cells and rat cortical neurons. Neurosci Lett. 2006;407(1):59–63.

    PubMed  CAS  Google Scholar 

  25. Ahmad A, Khan MM, Javed H, Raza SS, Ishrat T, Khan MB, et al. Edaravone ameliorates oxidative stress associated cholinergic dysfunction and limits apoptotic response following focal cerebral ischemia in rat. Mol Cell Biochem. 2012;367(1–2):215–25.

    PubMed  CAS  Google Scholar 

  26. Liu Y, Qiao F, Wang H. Enhanced proteostasis in post-ischemic stroke mouse brains by ubiquilin-1 promotes functional recovery. Cell Mol Neurobiol. 2016;37(7):1325–9.

    PubMed  PubMed Central  Google Scholar 

  27. Lu L, Wang H. Transient focal cerebral ischemia upregulates immunoproteasomal subunits. Cell Mol Neurobiol. 2012;32(6):965–70.

    PubMed  Google Scholar 

  28. Min JW, Lu L, Freeling JL, Martin DS, Wang H: USP14 inhibitor attenuates cerebral ischemia/reperfusion-induced neuronal injury in mice. J Neurochem 2017, 2017,140(5):826–833.

    PubMed  PubMed Central  CAS  Google Scholar 

  29. Chen JL, Zhang CL, Jiang H, Li Y, Zhang LJ, Robin A, et al. Atorvastatin induction of VEGF and BDNF promotes brain plasticity after stroke in mice. J Cerebr Blood F Met. 2005;25(2):281–90.

    Google Scholar 

  30. Hissin PJ, Hilf R. A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem. 1976;74(1):214–26.

    PubMed  CAS  Google Scholar 

  31. Gilliam LAA, Lark DS, Reese LR, Torres MJ, Ryan TE, Lin CT, et al. Targeted overexpression of mitochondrial catalase protects against cancer chemotherapy-induced skeletal muscle dysfunction. Am J Physiol-Endoc M. 2016;311(2):E293–301.

    Google Scholar 

  32. Liu F, Schafer DP, McCullough LD. TTC, fluoro-Jade B and NeuN staining confirm evolving phases of infarction induced by middle cerebral artery occlusion. J Neurosci Methods. 2009;179(1):1–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Chen JL, Sanberg PR, Li Y, Wang L, Lu M, Willing AE, et al. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke. 2001;32(11):2682–8.

    PubMed  CAS  Google Scholar 

  34. Terrill JR, Boyatzis A, Grounds MD, Arthur PG. Treatment with the cysteine precursor l-2-oxothiazolidine-4-carboxylate (OTC) implicates taurine deficiency in severity of dystropathology in mdx mice. Int J Biochem Cell Biol. 2013;45(9):2097–108.

    PubMed  CAS  Google Scholar 

  35. Bolling AK, Solhaug A, Morisbak E, Holme JA, Samuelsen JT. The dental monomer hydroxyethyl methacrylate (HEMA) counteracts lipopolysaccharide-induced IL-1beta release-possible role of glutathione. Toxicol Lett. 2017;270:25–33.

    PubMed  CAS  Google Scholar 

  36. Owen JB, Butterfield DA. Measurement of oxidized/reduced glutathione ratio. Methods Mol Biol. 2010;648:269–77.

    PubMed  CAS  Google Scholar 

  37. Chevion M, Berenshtein E, Stadtman ER. Human studies related to protein oxidation: protein carbonyl content as a marker of damage. Free Radic Res. 2000;33(Suppl):S99–108.

    PubMed  CAS  Google Scholar 

  38. Grice GL, Nathan JA. The recognition of ubiquitinated proteins by the proteasome. Cell Mol Life Sci. 2016;73(18):3497–506.

    PubMed  PubMed Central  CAS  Google Scholar 

  39. Sommer CJ. Ischemic stroke: experimental models and reality. Acta Neuropathol. 2017;133(2):245–61.

    PubMed  PubMed Central  Google Scholar 

  40. Yang GY, Betz AL. Reperfusion-induced injury to the blood-brain barrier after middle cerebral artery occlusion in rats. Stroke. 1994;25(8):1658–64 discussion 1664-1655.

    PubMed  CAS  Google Scholar 

  41. Yu X, Long YC. Crosstalk between cystine and glutathione is critical for the regulation of amino acid signaling pathways and ferroptosis. Sci Rep. 2016;6:30033.

    PubMed  PubMed Central  CAS  Google Scholar 

  42. Ghosh S, Das N, Mandal AK, Dungdung SR, Sarkar S. Mannosylated liposomal cytidine 5′ diphosphocholine prevent age related global moderate cerebral ischemia reperfusion induced mitochondrial cytochrome C release in aged rat brain. Neuroscience. 2010;171(4):1287–99.

    PubMed  CAS  Google Scholar 

  43. Ansari MA, Ahmad AS, Ahmad M, Salim S, Youscuf S, Ishrat T, et al. Selenium protects cerebral ischemia in rat brain mitochondria. Biol Trace Elem Res. 2004;101(1):73–86.

    PubMed  CAS  Google Scholar 

  44. Ansari MA, Joshi G, Huang QZ, Opii WO, Abdul HM, Sultana R, et al. In vivo administration of D609 leads to protection of subsequently isolated gerbil brain mitochondria subjected to in vitro oxidative stress induced by amyloid beta-peptide and other oxidative stressors: relevance to Alzheimer’s disease and other oxidative stress-related neurodegenerative disorders. Free Radical Bio Med. 2006;41(11):1694–703.

    CAS  Google Scholar 

  45. Xie CS, Lovell MA, Markesbery WR. Glutathione transferase protects neuronal cultures against four hydroxynonenal toxicity. Free Radical Bio Med. 1998;25(8):979–88.

    CAS  Google Scholar 

  46. Yang Y, Wang JY, Li Y, Fan CX, Jiang S, Zhao L, et al. HO-1 signaling activation by pterostilbene treatment attenuates mitochondrial oxidative damage induced by cerebral ischemia reperfusion injury. Mol Neurobiol. 2016;53(4):2339–53.

    PubMed  CAS  Google Scholar 

  47. Ge P, Luo Y, Liu CL, Hu B. Protein aggregation and proteasome dysfunction after brain ischemia. Stroke. 2007;38(12):3230–6.

    PubMed  PubMed Central  CAS  Google Scholar 

  48. Luo T, Park Y, Sun X, Liu C, Hu B. Protein misfolding, aggregation, and autophagy after brain ischemia. Transl Stroke Res. 2013;4(6):581–8.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the Physiology Core Facility at the University of South Dakota (USD) Division of Basic Biomedical Sciences for access to equipment and assistance with data analysis, Mr. Doug Jennewein from the USD-IT Research Computing for help in the database installation and servers operation, and Mrs. Daniela Paez from the USD proteomics Core Facility for assistance in processing and data organization.

New Author Contribution Statement

FQ and EM contributed to some in vitro studies. EC contributed to mass spectrometric analysis of OTC-interacting proteins.

Funding

This study was funded by the National Institute of Neurological Disorders and Stroke under research grant NS088084 and by the National Institute of General Medical Sciences under the grant P20GM103443.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongmin Wang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed in the study. This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(PDF 1472 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Min, JW., Feng, S. et al. Therapeutic Role of a Cysteine Precursor, OTC, in Ischemic Stroke Is Mediated by Improved Proteostasis in Mice. Transl. Stroke Res. 11, 147–160 (2020). https://doi.org/10.1007/s12975-019-00707-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-019-00707-w

Keywords

Navigation