Skip to main content
Log in

High frequency shoot proliferation from cotyledonary node of Lawsonia inermis L. and validation of their molecular finger printing

  • Research Article
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

An efficient and reproducible protocol for in vitro plant regeneration was developed for Lawsonia inermis L. using cotyledonary node explant derived from axenic seedlings. Highest shoot proliferation frequency (ca 96.6%) was achieved on Murashige and Skoog’s, 1962 (MS) basal medium supplemented with 8.88 μM 6-Benzyladenine (BA) + 2.68 μM Napthalene acetic acid (NAA). Up-scaling of shoots was carried out using in vitro nodes on MS medium supplemented with 4.44 μM BA. So overall, an average of 238 shoots was produced at 75 days. Of the four different forms of cotyledonary node explants evaluated, highest shoot multiplication was observed in cotyledonary node explant with two whole cotyledons. In vitro regenerated shoots were best rooted (ca 34.3 roots / shoot) on ½ MS medium devoid of any growth regulator. The plantlets were successfully acclimated in sand:soil:: 1:1and established in the garden soil. Random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) analysis revealed a homogeneous amplification profile for all micropropagated plants validating the genetic fidelity of the in vitro-regenerated plants and supporting the regeneration protocol for economic commercial exploitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed MR, Anis M, Aref IM. 2013. An efficient and reproducible method for in vitro propagation of Cassia alata L.- an important woody medicinal plant. Int. J. Pharm. Bio Sci. 4(3): 1223–1234

    CAS  Google Scholar 

  • Al-Tufail M, Krahn P, Hassan H, Mahier T, Al-Sedairy ST, Haq A. 1999. Rapid identification of phenylenediamine isomers in henna hair dye products by gas chromatography-mas spectrometry (GC-MS). Toxicol. Environ. Chem. 71: 241–246

    Article  CAS  Google Scholar 

  • Bakkali AT, Jaziri M, Foriers A, Vander HY, Vanhaelen M, Homes J. 1997. Lawsone accumulation in normal and transformed cultures of henna, Lawsonia inermis. Plant Cell Tiss. Org. Cult. 51: 83–87

    Article  Google Scholar 

  • Barik DP, Naik SK, Mohapatra U, Chand PK. 2004. High frequency plant regeneration by in vitro shoot proliferation in cotyledonary node explants of grasspea (Lthyrus sativus L.). In Vitro Cell Dev. Biol. Plant. 40: 467–470

    Article  CAS  Google Scholar 

  • Beena MR, Martin KP, Kirti PB, Hariharan M. 2003. Rapid in vitro propagation of medicinally important Ceropegia candelabrum. Plant Cell Tiss. Org. Cult. 72: 285–289

    Article  CAS  Google Scholar 

  • Behera S, Barik DP, Jena PK, NaikSK. 2013. In vitro plantlet regeneration from cotyledonary node of Pongamia pinnata (L.) Pierre: A multipurpose tree species. PPMNC on Recent Adv. Plant Biotechnol. 53–60

    Google Scholar 

  • Bhowmik SSD, Basu A, Sahoo L. 2016. Direct shoot organogenesis from rhizomes of medicinal Zingiber Alpinia calcarata Rosc. and evaluation of genetic stability by RAPD and ISSR markers. J. Crop Sci. Biotech. 19(2): 157–165

    Article  Google Scholar 

  • Blanca PM, Mariel P, Alma RL, Guadalupe SM, Silvia EL, Gabriela TT. 2012. A propagation procedure for Cuphea aequipetala Cav. (Lythraceae) and antioxidant properties of wild and greenhouse-grown plants. BLACPMA 11: 454–467

    Google Scholar 

  • Cartwright-Jones C. 2006. Developing guidelines on Henna: a geographical approach. Henna Page Publications, Ohio, USA

    Google Scholar 

  • Chandrika M, Rai VR. 2009. Genetic fidelity in micropropagated plantlets of Ochreinauclea missionis an endemic, threatened and medicinal tree using ISSR markers. Afr. J. Biotechnol. 8: 2933–2938

    CAS  Google Scholar 

  • Charisty JE, Jenothiny S, Pathmanathan MK, Jeyadevan JP. 2012. Antibacterial activity of sequencially extracted organic solvent extracts of fruits, flowers and leaves of Lawsonia inermi L. from Jaffna. Asian Pac. J. Trop. Biomed. 2: 798–802

    Article  Google Scholar 

  • Chaudhary G, Goyal S, Poonia P. 2010. Lawsonia inermis L.: a phytopharmacol review. Int. J. Pharma. Sci. Drug Res. 2: 91–98

    Google Scholar 

  • Chiruvella KK, Mohammed A, Ghanta RG. 2013. Utilization of aseptic seedling explants for in vitro propagation of Indian red wood. Not. Sci. Biol. 5(4): 518–523

    CAS  Google Scholar 

  • Chung WH, Chang YC, Yang LJ, Hung SI, Wong WR, Lin JY. 2002. Clinicopathologic features of skin reactions to temporary tattoos analysis of possible causes. Arch. Dermatol. 138: 88–91

    CAS  PubMed  Google Scholar 

  • Daffalla HH, Abdellatef E, Elhadi EA, Khalafalla MM. 2011. Effect of growth regulators on in vitro morphogenic response of Boscia senegalensis (Pers.) Lam. Poir. using mature zygotic embryos explants. Biotechnol. Res. Int. DOI:10.4061/2011/710758

    Google Scholar 

  • Doyle JJ, Doyle JL. 1990. Isolation of plant DNA from fresh tissue. Focus 12: 13–15

    Google Scholar 

  • Faisal M, Siddique I, Anis M. 2006. An efficient plant regeneration system for Mucuna pruriens (DC.) using cotyledonary node explants. In Vitro Cell. Dev. Biol. Plant. 42: 59–64

    Article  CAS  Google Scholar 

  • In Vitro Antimicrobial Activity of Acacia catechu and Its Phytochemical AnalysisGomez KA, Gomez AA. 1984. Statistical procedures for agricultural research. John Wiley and sons, Inc., London, UK 2nd Edn:13-175

    Google Scholar 

  • Goyal AK, Pradhan S, Basistha BC, Sen A. 2015. Micropropagation and assessment of genetic fidelity of Dendrocalamus strictus (Roxb.) nees using RAPD and ISSR markers. 3 Biotech. 5: 473–482

    Article  PubMed  Google Scholar 

  • Hanna R, Maciej JN, Lapinskey L, Adamowiz L. 1998. Molecular structure and infrared spectra of 2-hydrozyl 4-nephathequinone; experimental matrix isolation and theoretical hartree-fock and post hartree-fock study. Spec. Act. 54: 1091–1103

    Article  Google Scholar 

  • Kawiak A, Lojkowska E. 2004. Application of RAPD in the determination of genetic fidelity in micropropagated Drosera plantlets. In Vitro Cell. Dev. Biol. Plant. 40: 592–595

    Article  CAS  Google Scholar 

  • Keng CL, Yee LS, Pin PL. 2009. Micropropagation of Gynura procumbens (Lour.) Merr. an important medicinal plant. J. Med. Plants Res. 3(3): 105–111

    CAS  Google Scholar 

  • Kohlenbach HW. 1997. Basic aspects of differentiation and plant regeneration from cell and tissue culture. In: Barg W, Reinhard E, Zenk MH (ed). Plant Tissue Culture and its Biotechnological Application, Springer Verlag, New York, pp. 355–368

  • Kumar S, Laura JS, Singh N. 2016. A comparative in vitro propagation studies on different explants of salvadora oleoides decne-an endangered plant. Int. J. Curr. Microbiol. App. Sci. 5(6): 699–706

    Article  Google Scholar 

  • Lakshmanan V, Venkataramareddy SR, Neelwarne B. 2007. Molecular analysis of genetic stability in long-term micropropagated shoots of banana using RAPD and ISSR markers. Electron. J. Biotechnol. 10: 106–113

    Article  Google Scholar 

  • Lameira OA, Pinto JEBP. 2006. In vitro propagation of Cordia verbenacea L. (Boraginaceae). Rev. Bras. Pl. Med. Botucatu. 8: 102–104

    Google Scholar 

  • Lekouch N, Sedki A, Nejmeddine A, Gamon S. 2001. Lead and traditional Moroccan pharmacopoeia. Sci. Tot. Environ. 280: 39–34

    Article  CAS  Google Scholar 

  • Liu X, Yang G. 2012. Assessment of clonal fidelity of micropropagated guava (Psidium guajava) plants by ISSR markers. Aust. J. Crop. Sci. 6(2): 291–295

    CAS  Google Scholar 

  • Martin M, Sarmento D, Oliveira MM. 2004. Genetic stability of micropropagated almond plantlets, as assessed by RAPD and ISSR markers. Plant Cell Rep. 23: 492–496

    Article  Google Scholar 

  • Mohamed EAM, Dessoky ES, Attia AO, Hassan MM. 2014. Evaluation of genetic fidelity of in vitro raised plants of the important medicinal plant Harmal (Rhazya stricta Decne) using RAPD and ISSR markers. Int. J. Agric. Sci. Res. 4: 115–124

    Google Scholar 

  • Moharana A, Das A, Subudhi E, Naik SK, Barik DP. 2016. Assessment of genetic fidelity using random amplified polymorphic DNA and inter simple sequence repeats markers of Lawsonia inermis L. plants regenerated by axillary shoot proliferation. Proc. Natl. Acad. Sci. India B Biol. Sci. DOI 10.1007/s40011-016-0740-0

    Google Scholar 

  • Murashige T, Skoog F. 1962. A revised medium for rapid growth and bioassays with Tobacco tissue cultures. Physiol. Plant. 15: 473–497

    Article  CAS  Google Scholar 

  • Naik SK, Pattnaik S, Chand PK. 2000. In vitro propagation of pomegranate (Punica granatum L. cv. Ganesh) through axillary shoot proliferation from nodal segments of mature tree. Sci. Hort. 79: 175–183

    Article  Google Scholar 

  • Nayak SA, Kumar S, Satapathy K, Moharana A, Behera B, Barik DP, Acharya L, Mohapatra PK, Jena PK, Naik SK. 2013. In vitro plant regeneration from cotyledonary nodes of Withania somnifera (L.) Dunal and assessment of clonal fidelity using RAPD and ISSR markers. Acta Physiol. Plant. 35: 195–203

    Article  CAS  Google Scholar 

  • Nikfallah M, Venugopal A. 2014. Antimicrobial and photometric assessment of Lawsonia inermis on oral bacteria and tooth colour. IOSR J Dent. Medi. Sci. 13: 39–43

    Article  Google Scholar 

  • Paiker K, Kandir K. 2011. In vitro micropropagation and callus induction of Lawsonia inermis L. from shoot tips. Bioscan 6: 39–42

    CAS  Google Scholar 

  • Palombi MA, Damiano C. 2002. Comparison between RAPD and SSR molecular markers in detecting variation in kiwifruit (Actinidia deliciosa A. Chev). Plant Cell Rep. 20: 1061–1066

    Article  CAS  Google Scholar 

  • Parida R, Mohanty S, Nayak S. 2011. Evaluation of genetic fidelity of in vitro propagated greater galangal (Alpinia galanga L.) using DNA based markers. Int. J. Plant Anim. Environ. Sci. 1: 123–133

    CAS  Google Scholar 

  • Parveen S, Shahzad A. 2010. TDZ-induced high frequencyshoot regeneration in Cassia sophera Linn. via cotyledonary node explants. Physiol. Mol. Biol. Plants. 16(2): 201–206

    Article  PubMed  PubMed Central  Google Scholar 

  • Parveen S, Shahzad A. 2014. Factors affecting in vitro plant regeneration from cotyledonary node explant of Senna sophera (L.) Roxb.–A highly medicinal legume. Afr. J. Biotechnol. 13: 413–422

    Article  Google Scholar 

  • Rahman M, Rajora O. 2001. Microsatellite DNA somaclonal variation in micropropagated Tremblingaspen (Populus tremuloides). Plant Cell Rep. 20: 531–536

    Article  CAS  Google Scholar 

  • Rahmoun MN, Benabdallah M, Villemin D, Boucherit K, Mostefa-Kara B, Ziani-Cherif C, Choukchou-Braham N. 2010. Antimicrobial screening of the Algerian Lawsonia inermis (henna). Der. Pharma. Chemica. 6: 320–326

    Google Scholar 

  • Rai MK, Phulwaria M, Harish, Gupta AK, Shekhawat NS, Jaiswal U. 2012. Genetic homogeneity of guava plants derived from somatic embryogenesis using SSR and ISSR markers. Plant Cell Tiss. Organ. Cult. 111: 259–264

    Article  CAS  Google Scholar 

  • Ram K, Shekhawat NS. 2011. Micropropagation of commercially cultivated Henna (Lawsonia inermis) using nodal explants. Physiol. Mol. Biol. Plant. 17: 281–289

    Article  Google Scholar 

  • Rathore MS, Chikara J, Shaik, Mastan G, Rahman H, Anand KGV, Shekhawat NS. 2011. Assessment of genetic stability and instability of tissue culture-propagated plantlets of Aloe vera L. by RAPD and ISSR Markers. Appl. Biochem. Biotechnol. 165: 1356–1365

    Article  CAS  PubMed  Google Scholar 

  • Ray T, Dutta I, Saha P, Das S, Roy SC. 2006. Genetic stability of three economically important micropropagated banana (Musa spp.) cultivars of lower Indo-Gangetic plains, as assessed by RAPD and ISSR markers. Plant Cell Tiss. Organ Cult. 85: 11–21

    Article  CAS  Google Scholar 

  • Rout GR, Das G, Samantaray S, Das P. 2001. In vitro micropropagation of Lawsonia inermis (Lythraceae). Rev. Biol. Trop. 49: 957–963

    CAS  PubMed  Google Scholar 

  • Saglam S. 2012. Plant regeneration from pulse-treated longitudinally sliced half cotyledon node explants of Turkish Ochrus chuckling [Lathyrus ochrus (L.) DC.]. Arch. Biol. Sci. 64: 525–529

    Article  Google Scholar 

  • Saha S, Adhikari S, Dey T, Ghosh P. 2016. RAPD and ISSR based evaluation of genetic stability of micropropagated plantlets of Morus alba L. variety S-1. Meta Gene 7: 7–15

    Article  PubMed  Google Scholar 

  • Sambrook J, Russed DW. 2001. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA

    Google Scholar 

  • Sastri BN. 1962. The wealth of India. Council of Scientific and Industrial Research, New Delhi

    Google Scholar 

  • Satapathy G, Thirunavoukkarasu M, Behera PR, Panda PK. 2014. In vitro micropropagation of biofuel feed stock Pongam [Pongamia pinnata (L.) Pierre] through cotyledonary node culture and assessment of clonal uniformityby RAPD markers. Int. J. Pure App. Biosci. 2: 248–257

    Google Scholar 

  • Shekhawat NS, Rathore TS, Singh RP, Doera NS, Rao SR. 1993. Factors affecting in vitro clonal propagation of Prosapis cineraria. Plant Growth Regul. 12(3): 273–280

    Article  CAS  Google Scholar 

  • Singh P, Jain K, Jain B, Khare S. 2012. In vitro micropropagation of Lawsonia inermis: an important medicinal plant. Int. J. Curr. Res. Rev. 4: 29–34

    CAS  Google Scholar 

  • Thiyagarajan M, Venkatachalam P. 2013. A reproducible and high frequency plant regeneration from mature axillary node explants of Gymnema sylvestre (Gurmur)-An important antidiabetic endangered medicinal plant. Ind. Crops Prod. 50: 517–524

    Article  CAS  Google Scholar 

  • Varshney A, Lakshmikumaran M, Shrivastava PS, Dhawan V. 2001. Establishment of genetic fidelity of in vitro-raised Lilium Bulblets through RAPD markers. In Vitro Cell. Dev. Biol. Plant. 227: 23–32

    Google Scholar 

  • Vengadesan G, Ganapathi A, Anand RP, Anbazhagan VR. 2002. In vitro propagation of Acacia sinuata (Lour.) Merr. via cotyledonary nodes. Agrofor. Syst. 55: 9–15

    Article  Google Scholar 

  • Williams JGK, Kubelik AR, Liva KJ, Rafalski JA, Tingey SV. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl. Acid Res. 18: 6531–6535

    Article  CAS  Google Scholar 

  • Yadav R, Yadav N, Kumar S. 2015. An improved micropropagation and assessment of genetic fidelity in multipurpose medicinal tree, Acacia auriculiformis. Proc. Natl. Acad. Sci. India B Biol. Sci. DOI 10.1007/s40011-015-0550-9

    Google Scholar 

  • Zietkiewicz E, Rafalski A, Labuda D. 1994. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20: 176–183

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Durga P. Barik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moharana, A., Das, A., Subudhi, E. et al. High frequency shoot proliferation from cotyledonary node of Lawsonia inermis L. and validation of their molecular finger printing. J. Crop Sci. Biotechnol. 20, 405–416 (2017). https://doi.org/10.1007/s12892-017-0002-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-017-0002-0

Keywords

Navigation