Skip to main content
Log in

Seed halopriming outdo hydropriming in enhancing seedling vigor and osmotic stress tolerance potential of rice varieties

  • Research Article
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

Seed priming improves the seed performance and also helps the seedlings to alleviate the detrimental effects of various stresses. Seed priming is believed to bring about some biochemical changes in the metabolism within the seed, which ultimately favors germination and the further growth stages of the seedlings even under stressed conditions. The present investigation was carried out to study the effect of hydropriming and halopriming in three rice varieties (Neeraja, Vaisakh, and Vytilla 6), with varied abiotic stress tolerance potential under NaCl and PEG stress. In general, the application of both stresses, NaCl and PEG induced retardation of growth and metabolism of the seedlings. However, seed priming treatments could reduce the extent of decrease in these biological attributes. Both hydro- and halopriming resulted in the enhancement of protein, carbohydrate, and photosynthetic pigment content, modulated antioxidant enzyme activities, reduced the lipid peroxidation of biomembranes, and enhanced the photochemistry and mitochondrial activities in rice seedlings subjected to NaCl and PEG stress as compared to non-primed ones. According to the various morphological, physiological, and biochemical characteristics studied in the rice seedlings raised from primed and non-primed seeds, we confirmed that both hydropriming and halopriming had a positive influence on stimulating metabolism in rice seeds, which ultimately resulted in improved seedling vigor and tolerance under NaCl and PEG stress. Halopriming was found to be more efficient than hydropriming in enhancing the seedling vigor, overall growth, and stress tolerance potential of rice varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amarjit KN, Kumari S, Sharma DR. 2005. In vitro selection and characterization of water-stress tolerant cultures of bell pepper. Ind. J. Plant Physiol. 10: 14–19

    Google Scholar 

  • Anwar S, Iqbal M, Raza SH, Iqbal N. 2013. Efficacy of seed preconditioning with salicylic and ascorbic acid in increasing vigor of rice (Oryza sativa L.) seedling. Pak. J. Bot. 45: 157–162

    CAS  Google Scholar 

  • Arnon DI. 1949. Copper enzymes in isolated chloroplasts polyphenoloxidase in Beta vulgaris. Plant Physiol. 24: 1–5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ashraf M, Ali Q. 2008. Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola (Brassica napus L.). Environ. Exp. Bot. 63: 266–273

    Article  CAS  Google Scholar 

  • Ashraf M, Rasul E. 1988. Salt tolerance of mungbean (Vigna radiata) at two growth stages. Plant Soil 110: 63–67

    Article  Google Scholar 

  • Basra SMA, Farooq M, Tabassum R. 2005. Physiological and biochemical aspects of seed vigour enhancement treatments in fine rice (Oryza sativa L.). Seed Sci. Technol. 33: 623–628

    Article  Google Scholar 

  • Basra SMA, Farooq M, Afzal I, Hussain M. 2006. Influence of osmopriming on the germination and early seedling growth of coarse and fine rice. Int. J. Agric. Biol. 8: 19–22

    Google Scholar 

  • Bates LS, Waldren RP, Teare ID. 1973. Rapid determination of free proline for water stress studies. Plant Soil 39: 205–208

    Article  CAS  Google Scholar 

  • Behairy RT, El-Danasoury M, Craker L. 2012. Impact of ascorbic acid on seed germination, seedling growth and enzyme activity of salt stressed fenugreek. J. Medicinally Active Plants 1: 106–113

    Google Scholar 

  • Benamar A, Tallon C, Macherel D. 2003. Membrane integrity and oxidative properties of mitochondria isolated from imbibing pea seeds after priming or accelerated ageing. Seed Sci. Res. 13: 35–45

    Article  CAS  Google Scholar 

  • Berry SK, Kalra CL, Sehgal RC, Kulkarni SG, Kaur S, Arora SK, Sharma BR. 1988. Quality characteristics of seeds of five okra (Abelmoschus esculentus (L). Moench.) cultivars. J. Food Sci. Technol. 25: 303–305

    CAS  Google Scholar 

  • Birendra P, Shambhoo P. 2011. Standardization of seed hydro-priming time for rice (Oryza sativa L.). J. Hill Agric. 2: 115–118

    Google Scholar 

  • Chen X, Wang Y, Li J, Jiang A, Cheng Y, Zhang W. 2009. Mitochondrial proteome during salt stress-induced programmed cell death in rice. Plant Physiol. Biochem. 47: 407–415

    Article  CAS  PubMed  Google Scholar 

  • Conrath U, Beckers GJM, Flors V, Garcia-Agustin P, Jakab G et al. 2006. Priming: getting ready for battle. Mol. Plant Microbe Interact. 19: 1062–1071

    Article  CAS  PubMed  Google Scholar 

  • Dat J, Vandenabee S, Vranova E, Van Montagu M, Inz´e D, Van Breusegem F. 2000. Dual action of the active oxygen species during plant stress responses. Cell Mol. Life Sci. 57: 779–795

    Article  CAS  PubMed  Google Scholar 

  • Deivanai S, Xavier R, Vinod V, Timalata K, Lim OF. 2011. Role of exogenous proline in ameliorating salt stress at early stage in two rice cultivars. J. Stress Physiol. Biochem. 7: 157–174

    Google Scholar 

  • Dey MM, Upadhyay HK. 1996. Yield loss due to drought, cold and submergence in Asia. In RE Evenson, RW Herdt, M Hossain, eds, Rice Research in Asia, Progress and Priorities, Cary NC, Oxford University Press, pp 231–242

    Google Scholar 

  • Dubey RS. 1997. Photosynthesis in plants under stress-ful conditions. In M Pessarakli, ed, Handbook of Photosynthesis, Marcel Dekker, New York, pp 859–875

    Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 26: 350–356

    Article  Google Scholar 

  • Ella ES, Dionisio-Sese ML, Ismail AM. 2011. Seed pre-treatment in rice reduces damage, enhances carbohydrate mobilization and improves emergence and seedling establishment under flooded conditions. AoB Plants plr007, doi:10.1093/aobpla/plr007

    Google Scholar 

  • El-Samad HMA, Shaddad MAK, Barakat N. 2011. Improvement of plants salt tolerance by exogenous application of amino acids. J. Med. Plants Res. 5: 5692–5699

    Google Scholar 

  • Farooq M, Basra SMA, Hafeez K. 2005. Seed invigoration by osmohardening in Indica and Japonica rice. Seed Sci. Technol. 34: 181–187

    Article  Google Scholar 

  • Farooq M, Basra SMA, Rehman HV. 2006a. Seed priming enhances emergence, yield and quality of direct-seeded rice. Int. Rice Res. Notes 31: 42–44

    Google Scholar 

  • Farooq M, Basra SMA, Rehman HV, Tariq M. 2006b. Germination and early seedling growth as affected by pre sowing ethanol seed treatments in fine rice. Int. J. Agric. Biol. 8: l–20

    Google Scholar 

  • Gallardo K, Job C, Groot SPC, Puype M, Demol H, Vandekerckhove J, Job D. 2001. Proteomic analysis of Arabidopsis seed germination and priming. Plant Physiol. 126: 835–848

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gaspar T, Penel C, Greppin H. 1975. Peroxidase and isoperoxidase in relation to root and flower formation. Plant Biochem. J. 2: 33–47

    CAS  Google Scholar 

  • Giannopolitis CN, Reis SK. 1977. Superoxide Dismutase I. Occurence in higher plants. Plant Physiol. 59: 309–314

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Habib N, Ashraf M, Ahmad MSA. 2010. Enhancement in seed germinability of rice (Oryza sativa L.) by pre-sowing seed treatment with nitric oxide (NO) under salt stress. Pak. J. Bot. 42: 4071–4078

    Google Scholar 

  • Hageman RH, Reed AJ. 1980. Nitrate reductase from higher plants. In A Sanpietra, ed, Methods in Enzymology, Academic Press, New York, 23, 491–503

    Article  Google Scholar 

  • Harris D, Joshi A, Khan PA, Gothkar P, Sodhi PS. 1999. Onfarm seed priming in semi-arid agriculture: Development and evaluation in maize, rice and chickpea in India, using participatory methods. Exp. Agric. 35: 15–29

    Article  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ. 2000. Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51: 463–499

    Article  CAS  PubMed  Google Scholar 

  • Heath RL, Packer L. 1968. Photoperoxidation in isolated chloroplasts. I- Kinetics and stochiometry of fatty acid peroxidation. Pak. J. Bot. 125:189–198

    CAS  Google Scholar 

  • Hsu SY, Hsu YT, Kao CH. 2003. The effect of polyethylene glycol on proline accumulation in rice leaves. Biol. Plant. 46: 73–78

    Article  CAS  Google Scholar 

  • Iqbal M, Ashraf M. 2005. Pre-sowing seed treatment with cytokinins and its effect on growth, photosynthetic rate, ionic levels and yield of two wheat cultivars differing in salt tolerance. J. Integr. Plant Biol. 47: 1315–1325

    Article  CAS  Google Scholar 

  • Iqbal M, Ashraf M. 2007. Seed preconditioning modulates growth, ionic relations, and photosynthetic capacity in adult plants of hexaploid wheat under salt stress. J. Plant Nutr. 30: 381–396

    Article  CAS  Google Scholar 

  • Iqbal M, Ashraf M. 2010. Changes in hormonal balance: A possible mechanism of pre-sowing chilling-induced salt tolerance in spring wheat. J. Agron. Crop Sci. 196: 440–454

    Article  Google Scholar 

  • Iqbal M, Ashraf M. 2013. Gibberellic acid mediated induction of salt tolerance in wheat plants: Growth, ionic partitioning, photosynthesis, yield and hormonal homeostasis. Environ. Exp. Bot. 86: 76–85

    Article  CAS  Google Scholar 

  • Jamil M, Malook I, Parveen S, Naz P, Ali A, Jan SU, Rehman S. 2013. Smoke priming, a potent protective agent against salinity: Effect on proline accumulation, elemental uptake, pigmental attributes and protein banding patterns of rice (Oryza Sativa L.). J. Stress Physiol. Biochem. 9: 169–183

    Google Scholar 

  • Jisha KC, Vijayakumari K, Puthur JT. 2013. Seed priming for abiotic stress tolerance: an overview. Acta Physiol. Plant. 35: 1381–1396

    Article  Google Scholar 

  • Kaya MD, Okcu G, Atak M, Cikili Y, Kolsaric O. 2006. Seed treatments to overcome salt and drought stress during germination in sunfower (Helianthus annuus L.), Europ. J. Agron. 24: 291–295

    Article  CAS  Google Scholar 

  • Kameli A, Losel DM. 1993. Carbohydrates and water status in wheat plants under water stress. New Phytol. 125: 609–614

    Article  CAS  Google Scholar 

  • Khush GS. 2005. What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol. Biol. 59: 1–6

    Article  CAS  PubMed  Google Scholar 

  • Kolloffel C. 1967. Respiration rate and mitochondrial activity in the cotyledons of Pisum sativum during germination. Acta Bot. Neerl. 16: 111–122

    Google Scholar 

  • Liu J, Liu GS, Qi DM, Li FF, Wang EH. 2002. Effect of PEG on germination and active oxygen metabolism in wild rye (Leymus chinensis) seeds. Acta Prataculture Sin. 11: 59–64

    Google Scholar 

  • Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ. 1951. Protein measurement with Folin-phenol reagent. J. Biol. Chem. 193: 265–275

    CAS  PubMed  Google Scholar 

  • Mahdavi B, Rahimi A. 2013. Seed priming with chitosan improves the germination and growth performance of ajowan (Carum copticum) under salt stress. Eurasia. J. Biosci. 7: 69–76

    Article  Google Scholar 

  • Mathew J, Mohanasarida K. 2005. Seed priming on crop establishment and seedling vigour in semi-dry rice (Oryza sativa). Res. Crops 6: 23–25

    Google Scholar 

  • Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7: 405–410

    Article  CAS  PubMed  Google Scholar 

  • Mittova V, Guy M, Tal M, Volokita M. 2004. Salinity up-regulates the antioxidative system in root mitochondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennellii. J. Exp. Bot. 55: 1105–13

    Article  CAS  PubMed  Google Scholar 

  • Mondal S, Viji P, Bose B. 2011. Role of seed hardening in rice variety Swarna (MTU 7029). Res. J. Seed Sci. 4: 157–165

    Article  Google Scholar 

  • Moosavi A, Afshari RT, Sharif-Zadeh F, Aynehband A. 2009. Effect of seed priming on germination characteristics, polyphenoloxidase, and peroxidase activities of four amaranth cultivars. J. Food Agric Environ. 7: 353–358

    CAS  Google Scholar 

  • Munns R. 2002. Comparative physiology of salt and water stress. Plant Cell Environ. 25: 239–250

    Article  CAS  PubMed  Google Scholar 

  • Nawaz F, Ashraf MY, Ahmad R, Waraich EA. 2013. Selenium (Se) seed priming induced growth and biochemical changes in wheat under water deficit conditions. Biol. Trace Element Res. 151: 284–293

    Article  CAS  Google Scholar 

  • Oukarroum A, Schansker G, Strasser RJ. 2009. Drought stress effects on photosystem I content and photosystem II thermo tolerance analyzed using Chl a fluorescence kinetics in barley varieties differing in their drought tolerance. Physiol. Plant. 137: 188–199

    Article  CAS  PubMed  Google Scholar 

  • Patade VY, Sujata B, Suprasanna P. 2009. Halopriming imparts tolerance to salt and PEG induced drought stress in sugarcane. Agric. Ecosyst. Environ. 134: 24–28

    Article  CAS  Google Scholar 

  • Puthur JT. 2000. Photosynthetic events in Sesbania sesban (L.) Merrill in relation to osmotic stress during different developmental stages. Ph.D. Thesis, Jamia Millia Islamia, New Delhi

    Google Scholar 

  • Randhir R, Shetty K. 2005. Developmental stimulation of total phenolics and related antioxidant activity in light-and dark-germinated corn by natural elicitors. Proc. Biochem. 40: 1721–1732

    Article  CAS  Google Scholar 

  • Rontein G, Basset, Hanson, AD. 2002. Metabolic engineering of osmoprotectant accumulation in plants. Metab. Eng. 4: 49–56

    Article  CAS  PubMed  Google Scholar 

  • Rouhi HR, Aboutalebian MA, Moosavi SA, Karimi FA, Karimi F, Saman M, Samadi M. 2012. Change in several antioxidant enzymes activity of Berseem clover (Trifolium alexandrinum L.) by priming. Int. J. Agric. Sci. 2: 237–243

    CAS  Google Scholar 

  • Saha P, Chatterjee P, Biswas AK. 2010. NaCl pretreatment alleviates salt stress by enhancement of antioxidant defense system and osmolyte accumulation in mungbean (Vigna radiata L. Wilczek). Ind. J. Exp. Biol. 48: 593–600

    CAS  Google Scholar 

  • Sass RL, Cicerone RJ. 2002. Photosynthate allocations in rice plants: food production or atmospheric methane? J. Plant Physiol. 99: 11993–11995

    CAS  Google Scholar 

  • Scandalios JG. 1993. Oxygen stress and superoxide dismutases. Plant Physiol. 101:7–12

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schmitt N, Dizengremel P. 1989. Effect of osmotic stress on mitochondria isolated from etiolated mung bean and sorghum seedlings. Plant Physiol. Biochem. 27: 17–26

    Google Scholar 

  • Sing-Tomar R, Mathur S, Allakhverdier SI, Jajoo A. 2012. Changes in PS II heterogeneity in response to osmotic and ionic stress in wheat leaves (Triticum aestivum). J. Bioenerg. Biomembr. 44: 411–419

    Article  Google Scholar 

  • Sudhir PR, Pogoryelov D, Kovacs L, Garab G, Murthy SDS. 2005. The effects of salt stress on photosynthetic electron transport and thylakoid membrane proteins in the cyanobacterium Spirulina platensis. Biochem. Mol. Biol. 38: 481–485

    Article  CAS  Google Scholar 

  • Tavili A, Zare S, Moosav SA, Enayati A. 2011. Effects of seed priming on germination characteristics of bromus species under salt and drought conditions. Am-Eurasian J. Agric. Environ. Sci. 10: 163–168

    Google Scholar 

  • Varier A, Vari AK, Dadlani M. 2010. The sub cellular basis of seed priming. Curr. Sci. 99: 450–456

    CAS  Google Scholar 

  • Wang W, Vinocur B, Altman A. 2003. Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta 218: 1–14

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A. 2004. Role of plant heat shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci. 9: 244–252

    Article  CAS  PubMed  Google Scholar 

  • Yagmur M, Kaydan D. 2008. Alleviation of osmotic strength of water and salt in germination and seedling growth of triticale with seed priming treatments. Afr. J. Biotechnol. 7: 2156–2162

    CAS  Google Scholar 

  • Yang CM, Sung JM. 1980. Relations between nitrate reductase activity and growth of rice seedlings. J. Agric. Assoc. China 111: 15–23

    CAS  Google Scholar 

  • Yeh YM, Chiu KY, Chen CL, Sung JM. 2005. Partial vacuum extends the longevity of primed bitter gourd seeds by enhancing their anti-oxidative activities during storage. Sci. Hortic. 104: 101–112

    Article  CAS  Google Scholar 

  • Yuan-Yuan S, Yong-Jian S, Ming-Tian W, Xu-Yi L, Xiang G, Rong H, Jun MA. 2010. Effects of seed priming on germination and seedling growth under water stress in rice. Acta Agron. Sin. 36: 1931–1940

    Article  Google Scholar 

  • Zhang S, Hu J, Zhang Y, Xie XJ, Knapp A. 2007. Seed priming with brassinolide improves lucerne (Medicago sativa L.) seed germination and seedling growth in relation to physiological changes under salinity stress. Aust. J. Agric. Res. 58: 811–815

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jos Thomas Puthur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jisha, K.C., Puthur, J.T. Seed halopriming outdo hydropriming in enhancing seedling vigor and osmotic stress tolerance potential of rice varieties. J. Crop Sci. Biotechnol. 17, 209–219 (2014). https://doi.org/10.1007/s12892-014-0077-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-014-0077-2

Key words

Navigation