Skip to main content
Log in

An Efficient and Highly Sensitive Amperometric Quercetin Sensor Based on a Lotus Flower Like SeO2-Decorated rGO Nanocomposite Modified Glassy Carbon Electrode

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

The present study involved to synthesize reduced grapheme oxide (rGO) nanocomposite–decorated lotus flower–like selenium dioxide (SeO2) nanomaterial by the sonochemical method, and it was utilized for electrochemical detection of quercetin (QR) (a flavonoid) in natural food sample, urine, and blood serum samples. The as-synthesized nanomaterial was characterized by XRD, FT-IR, Raman, BET, FE-SEM, EDX, and mapping analysis techniques. The SeO2/rGO nanocomposite modified on glassy carbon electrode (GCE) showed an excellent electrocatalytic activity towards the detection of QR as compared with other modified GCEs, and bare GCE. Moreover, the present electrochemical sensor was exhibited a superior current response for sensing of QR with wide linear ranges (from 0.01 to 200 µM), high sensitivity (71.023 µA µM−1 cm−2), and a lowest limit of detection (LOD) of 0.0016 µM. Besides, the fabricated SeO2/rGO nanocomposite–modified GCE was provided an excellent selectivity for QR in the presence of facile biological and inorganic interfering species. The fabricated SeO2/rGO-modified GCE was utilized for the determination of QR in various real samples, and the obtained data showed good recovery results.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. X. Lou, B. Yuan, L. Wang, H. Xu, M. Hanna, L. Yuan, Evaluation of physicochemical characteristics, nutritional composition and antioxidant capacity of Chinese organic hawthorn berry (Crataegus pinnatifida). Int. J. Food Sci. Technol. 55, 1679–1688 (2020). https://doi.org/10.1111/ijfs.14437

    Article  CAS  Google Scholar 

  2. D. Oliveira, C. Latimer, P. Parpot, C.I.R. Gill, R. Oliveira, Antioxidant and antigenotoxic activities of Ginkgo biloba L. leaf extract are retained after in vitro gastrointestinal digestive conditions, Eur. J. Nutr. 59, 465–476 (2020). https://doi.org/10.1007/s00394-019-01915-8

  3. X. Zhang, J. Huang, C. Yu, L. Xiang, L. Li, D. Shi, F. Lin, Quercetin enhanced paclitaxel therapeutic effects towards PC-3 prostate cancer through ER stress induction and ros production. Onco. Targets. Ther. 13, 513–523 (2020). https://doi.org/10.2147/OTT.S228453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. G.K. Ziyatdinova, S.P. Zakharova, E.R. Ziganshina, H.C. Budnikov, Voltammetric determination of flavonoids in medicinal plant materials using electrodes modified by cerium dioxide nanoparticles and surfactants. J. Anal. Chem. 74, 816–824 (2019). https://doi.org/10.1134/S106193481908015X

    Article  CAS  Google Scholar 

  5. W. Huang, K. Seehafer, U.H.F. Bunz, Discrimination of flavonoids by a hypothesis free Sensor array. ACS Appl. Polym. Mater. 1, 1301–1307 (2019). https://doi.org/10.1021/acsapm.9b00116

    Article  CAS  Google Scholar 

  6. N. Sebastian, W.C. Yu, D. Balram, Synthesis of amine-functionalized multi-walled carbon nanotube/3D rose flower-like zinc oxide nanocomposite for sensitive electrochemical detection of flavonoid morin. Anal. Chim. Acta. 1095, 71–81 (2020). https://doi.org/10.1016/j.aca.2019.10.026

    Article  CAS  PubMed  Google Scholar 

  7. J. Hu, Z. Zhang, Application of electrochemical sensors based on carbon nanomaterials for detection of flavonoids. Nanomaterials 10, 1–14 (2020). https://doi.org/10.3390/nano10102020

    Article  CAS  Google Scholar 

  8. H. Li, S. Wang, F. Cui, B. Zhuo, C. Zhao, W. Liu, Sensitive and selective detection of puerarin based on the hybrid of reduced graphene oxide and molecularly imprinted polymer. J. Pharm. Biomed. Anal. 185, 113221 (2020). https://doi.org/10.1016/j.jpba.2020.113221

    Article  CAS  PubMed  Google Scholar 

  9. S. Tajik, Z. Dourandish, K. Zhang, H. Beitollahi, Q.V. Le, H.W. Jang, M. Shokouhimehr, Carbon and graphene quantum dots: a review on syntheses, characterization, biological and sensing applications for neurotransmitter determination. RSC. Adv. 10, 15406–15429 (2020). https://doi.org/10.1039/D0RA00799D

    Article  CAS  Google Scholar 

  10. Z. Zhou, P. Zhao, C. Wang, P. Yang, Y. Xie, J. Fei, Ultra-sensitive amperometric determination of quercetin by using a glassy carbon electrode modified with a nanocomposite prepared from aminated graphene quantum dots, thiolated β-cyclodextrin and gold nanoparticles. Microchim. Acta. 187, 1–9 (2020). https://doi.org/10.1007/s00604-019-4106-1

    Article  CAS  Google Scholar 

  11. S. Feng, J. Guo, X. Chen, J. Meng, G. Zhang, G. Liu, H. Sun, B. Wang, W. Liu, N, S co-doped graphene/Ag@Au triangular core-shell nanomaterials for determination of quercetin, Int. J. Electrochem. Sci. 15, 8041–8054 (2020). https://doi.org/10.20964/2020.08.44

  12. X. Zhang, B. Shao, L. Yan, Y. Lu, M. Zhao, X. He, X. Li, W. Sun, Pyronine B/graphene copolymer modified carbon molecular wire electrode for electrochemical Detection of Quercetin, Int. J. Electrochem. Sci. 16, 150960 (2021). https://doi.org/10.20964/2021.01.66

  13. V. Vinothkumar, A. Sangili, S.M. Chen, P. Veerakumar, K.C. Lin, Sr-Doped NiO3 nanorods synthesized by a simple sonochemical method as excellent materials for voltammetric determination of quercetin. New J. Chem. 44, 2821–2832 (2020). https://doi.org/10.1039/c9nj05660b

    Article  CAS  Google Scholar 

  14. E. Kuyumcu Savan, Square Wave Voltammetric (SWV) Determination of quercetin in tea samples at a single-walled carbon nanotube (SWCNT) modified glassy carbon electrode (GCE), Anal. Lett. 53, 858–872 (2020). https://doi.org/10.1080/00032719.2019.1684514

  15. G. Ran, Y. Li, Y. Xia, Graphene oxide and electropolymerized p-aminobenzenesulfonic acid mixed film used as dopamine and serotonin electrochemical sensor. Monatshefte Fur Chemie. 151, 293–299 (2020). https://doi.org/10.1007/s00706-020-02559-9

    Article  CAS  Google Scholar 

  16. E. Demir, A. Senocak, M.F. Tassembedo-Koubangoye, E. Demirbas, H.Y. Aboul-Eneın, Electrochemical evaluation of the total antioxidant capacity of yam food samples on a polyglycine-glassy carbon modified electrode. Curr. Anal. Chem. 16, 176–183 (2020). https://doi.org/10.2174/1573411014666180619143729

    Article  CAS  Google Scholar 

  17. J. Jing, Y. Shi, Q. Zhang, J. Wang, J. Ruan, Prediction of Chinese green tea ranking by metabolite profiling using ultra-performance liquid chromatography–quadrupole time-of-flight mass spectrometry (UPLC–QTOF/MS). Food Chem. 221, 311–316 (2017). https://doi.org/10.1016/j.foodchem.2016.10.068

    Article  CAS  PubMed  Google Scholar 

  18. R. Ravichandran, M. Rajendran, D. Devapiriam, Antioxidant study of quercetin and their metal complex and determination of stability constant by spectrophotometry method. Food Chem. 146, 472–478 (2014). https://doi.org/10.1016/j.foodchem.2013.09.080

    Article  CAS  PubMed  Google Scholar 

  19. V. Pilařová, K. Plachká, L. Chrenková, I. Najmanová, P. Mladěnka, F. Švec, O. Novák, L. Nováková, Simultaneous determination of quercetin and its metabolites in rat plasma by using ultra-high performance liquid chromatography tandem mass spectrometry. Talanta 185, 71–79 (2018). https://doi.org/10.1016/j.talanta.2018.03.033

    Article  CAS  PubMed  Google Scholar 

  20. X. Lu, C.F. Ross, J.R. Powers, B.A. Rasco, Determination of quercetins in onion (Allium cepa) using infrared spectroscopy. J. Agric. Food Chem. 59, 6376–6382 (2011). https://doi.org/10.1021/jf200953z

    Article  CAS  PubMed  Google Scholar 

  21. R. Bugianesi, M. Serafini, F. Simone, D. Wu, S. Meydani, A. Ferro-Luzzi, E. Azzini, G. Maiani, Highperformance liquid chromatography with coulometric electrode array detector for the determination of quercetin levels in cells of the immune system. Anal. Biochem. 284, 296–300 (2000). https://doi.org/10.1006/abio.2000.4697

    Article  CAS  PubMed  Google Scholar 

  22. H. Duan, Y. Chen, G. Chen, Far infrared-assisted extraction followed by capillary electrophoresis for the determination of bioactive constituents in the leaves of Lycium barbarum Linn., J. Chromatogr. A. 1217, 4511–4516 (2010). https://doi.org/10.1016/j.chroma.2010.04.069

  23. G. Chen, H. Zhang, J. Ye, Determination of rutin and quercetin in plants by capillary electrophoresis with electrochemical detection. Anal. Chim. Acta. 423, 69–76 (2000). https://doi.org/10.1016/S0003-2670(00)01099-0

    Article  CAS  Google Scholar 

  24. D. Wu, Z. Chen, ZnS quantum dots-based fluorescence spectroscopic technique for the detection of quercetin. Luminescence 29, 307–313 (2014). https://doi.org/10.1002/bio.2545

    Article  CAS  PubMed  Google Scholar 

  25. J. Yu, H. Jin, R. Gui, W. Lv, Z. Wang, A facile strategy for ratiometric electrochemical sensing of quercetin in electrolyte solution directly using bare glassy carbon electrode. J. Electroanal. Chem. 795, 97–102 (2017). https://doi.org/10.1016/j.jelechem.2017.04.053

    Article  CAS  Google Scholar 

  26. P. Zuo, D. Xiao, M. Gao, J. Peng, R. Pan, Y. Xia, H. He, Single-step preparation of fluorescent carbon nanoparticles, and their application as a fluorometric probe for quercetin. Microchim. Acta. 181, 1309–1316 (2014). https://doi.org/10.1007/s00604-014-1236-3

    Article  CAS  Google Scholar 

  27. Z. Cai, H. Li, J. Wu, L. Zhu, X. Ma, C. Zhang, Ascorbic acid stabilised copper nanoclusters as fluorescent sensors for detection of quercetin. RSC Adv. 10, 8989–8993 (2020). https://doi.org/10.1039/d0ra01265c

    Article  CAS  Google Scholar 

  28. A.N. Raja, Annu, R.Jain, Development of Aloe-vera-titanium oxide –based ultrasensitive sensor for the quantification of quercetin, Anal Sci Adv. 1, 56–59 (2020). https://doi.org/10.1002/ansa.202000010

  29. Y. Ji, Y. Li, B. Ren, X. Liu, Y. Li, J. Soar, Nitrogen-doped graphene-ionic liquid-glassy carbon microsphere paste electrode for ultra-sensitive determination of quercetin. Microchem. J. 155, 104689 (2020). https://doi.org/10.1016/j.microc.2020.104689

    Article  CAS  Google Scholar 

  30. Y. Peng, M. Liao, X. Ma, H. Deng, F. Gao, R. Dai, L. Lu, Electrochemical determination of rutin using SnO2/nitrogen-doped graphene composite electrode, Int. J. Electrochem. Sci. 14, 4946–4956 (2019). https://doi.org/10.20964/2019.06.28

  31. A. Şenocak, Simple and sensitive detection of quercetin antioxidant by teos coated magnetic Fe2O3 core-shell, J. Turkish Chem. Soc. Sect. A Chem. 7, 525–534 (2020). https://doi.org/10.18596/jotcsa.733141

  32. G. Ziyatdinova, E. Kozlova, H. Budnikov, Poly(gallic acid)/MWNT-modified electrode for the selective and sensitive voltammetric determination of quercetin in medicinal herbs. J. Electroanal. Chem. 821, 73–81 (2018). https://doi.org/10.1016/j.jelechem.2017.12.071

    Article  CAS  Google Scholar 

  33. X. Niu, X. Li, W. Chen, X. Li, W. Weng, C. Yin, R. Dong, W. Sun, G. Li, Three-dimensional reduced graphene oxide aerogel modified electrode for the sensitive quercetin sensing and its application. Mater. Sci. Eng. C. 89, 230–236 (2018). https://doi.org/10.1016/j.msec.2018.04.015

    Article  CAS  Google Scholar 

  34. J. Manokaran, R. Muruganantham, A. Muthukrishnaraj, N. Balasubramanan, Platinum –polydopamine@SiO2 nanocomposite modified electrode for the electrochemical determination of Quercetin. Electrochim Acta. 168, 16–24 (2015). https://doi.org/10.1016/j.electacta.2015.04.016

    Article  CAS  Google Scholar 

  35. S. Tajyani, A. Babaei, A new sensing platform based on magnetic Fe3O4@NiO core/shell nanoparticles for simultaneous voltammetric determination of quercetin and tryptophan. J Electroanal Chem. 808, 50–58 (2018). https://doi.org/10.1016/j.jelechem.2017.11.010

    Article  CAS  Google Scholar 

  36. M. Wang, D. Zhang, Z. Tong, X. Xu, X. Yang, Voltammetric behavior and the determination of quercetin at a flowerlike Co3O4 nanoparticles modified glassy carbon electrode. J. Appl. Electrochem. 41, 189–196 (2011). https://doi.org/10.1007/s10800-010-0223-6

    Article  CAS  Google Scholar 

  37. A. Karthika, V. Ramasamy Raja, P. Karuppasamy, A. Suganthi, M. Rajarajan, A novel electrochemical sensor for determination of hydroquinone in water using FeWO4/SnO2 nanocomposite immobilized modified glassy carbon electrode, Arab. J. Chem. 13, 4065–4081 (2020). https://doi.org/10.1016/j.arabjc.2019.06.008

  38. A. Karthika, A. Suganthi, M. Rajarajan, An in-situ synthesis of novel V2O5/G-C3N4/PVA nanocomposite for enhanced electrocatalytic activity toward sensitive and selective sensing of folic acid in natural samples. Arab. J. Chem. 13, 3639–3652 (2020). https://doi.org/10.1016/j.arabjc.2019.12.009

    Article  CAS  Google Scholar 

  39. A. Karthika, D.R. Rosaline, S.S.R. Inbanathan, A. Suganthi, M. Rajarajan, Fabrication of Cupric oxidedecorated β-cyclodextrin nanocomposite solubilized Nafion as a high performance electrochemical sensor for L-tyrosine detection. J. Phys. Chem. Solids. 136, 109145 (2020). https://doi.org/10.1016/j.jpcs.2019.109145

    Article  CAS  Google Scholar 

  40. A. Karthika, V. Ramasamy Raja, P. Karuppasamy, A. Suganthi, M. Rajarajan, Electrochemical behaviour and voltammetric determination of mercury (II) ion in cupric oxide/poly vinyl alcohol nanocomposite modified glassy carbon electrode, Microchem. J. 145, 737–744 (2019). https://doi.org/10.1016/j.microc.2018.11.030

  41. X. Tian, L. Liu, Y. Li, C. Yang, Z. Zhou, Y. Nie, Y. Wang, Nonenzymatic electrochemical sensor based on CuO-TiO2 for sensitive and selective detection of methyl parathion pesticide in ground water. Sensors Actuators, B Chem. 256, 135–142 (2018). https://doi.org/10.1016/j.snb.2017.10.066

    Article  CAS  Google Scholar 

  42. M. Siva Prasad, R. Chen, H. Ni, K. Kiran Kumar, Directly grown of 3D-nickel oxide nano flowers on TiO2 nanowire arrays by hydrothermal route for electrochemical determination of naringenin flavonoid in vegetable samples, Arab. J. Chem. 13, 1520–1531 (2020). https://doi.org/10.1016/j.arabjc.2017.12.004

  43. A. Karthika, P. Karuppasamy, S. Selvarajan, A. Suganthi, M. Rajarajan, Electrochemical sensing of nicotine using CuWO4 decorated reduced graphene oxide immobilized glassy carbon electrode. Ultrason. Sonochem. 55, 196–206 (2019). https://doi.org/10.1016/j.ultsonch.2019.01.038

    Article  CAS  PubMed  Google Scholar 

  44. S. Chaudhary, S.K. Mehta, Selenium nanomaterials: applications in electronics, catalysis and sensors. J. Nanosci. Nanotechnol. 14, 1658–1674 (2014). https://doi.org/10.1166/jnn.2014.9128

    Article  CAS  PubMed  Google Scholar 

  45. D.M. Stanković, E. Mehmeti, J. Zavašnik, K. Kalcher, Determination of nitrite in tap water: a comparative study between cerium, titanium and selenium dioxide doped reduced graphene oxide modified glassy carbon electrodes. Sensors Actuators, B Chem. 236, 311–317 (2016). https://doi.org/10.1016/j.snb.2016.06.018

    Article  CAS  Google Scholar 

  46. A.H. Shar, M.N. Lakhan, J. Wang, M. Ahmed, K.T. Alali, R. Ahmed, I. Ali, A.Q. Dayo, Facile synthesis and characterization of selenium nanoparticles by the hydrothermal approach. Dig. J. Nanomater. Biostructures. 14, 867–872 (2019)

    Google Scholar 

  47. S. Swathi, B.J. Rani, G. Ravi, R. Yuvakkumar, S.I. Hong, D. Velauthapillai, B. Saravanakumar, M. Thambidurai, C. Dang, Designing rational and cheapest SeO2 electrocatalyst for long stable water splitting process. J. Phys. Chem. Solids. 145, 109544 (2020). https://doi.org/10.1016/j.jpcs.2020.109544

    Article  CAS  Google Scholar 

  48. G. Singh, A. Kushwaha, M. Sharma, Intriguing peroxidase-mimic for H2O2 and glucose sensing: A synergistic Ce2(MoO4)3/rGO nanocomposites, J. Alloys Compd. 825, 154134 (2020)

  49. https://doi.org/10.1016/j.jallcom.2020.154134

  50. M. Dong, H. Hu, S. Ding, C. Wang, L. Li, Fabrication of NiMn2O4 nanosheets on reduced graphene oxide for non-enzymatic detection of glucose. Mater. Technol. (2020). https://doi.org/10.1080/10667857.2020.1740861

    Article  Google Scholar 

  51. K. Sakthivel, G. Mani, S.M. Chen, S.H. Lin, A. Muthumariappan, V. Mani, A novel synthesis of nonaggregated spinel nickel ferrite nanosheets for developing non-enzymatic reactive oxygen species sensor in biological samples. J. Electroanal. Chem. 820, 161–167 (2018). https://doi.org/10.1016/j.jelechem.2018.04.058

    Article  CAS  Google Scholar 

  52. M. Kazemi, A. Akbari, H. Zarrinfar, S. Soleimanpour, Z. Sabouri, M. Khatami, M. Darroudi, Evaluation of antifungal and photocatalytic activities of gelatin-stabilized selenium oxide nanoparticles. J Inorg Organomet Polym. 30, 3036–3044 (2020). https://doi.org/10.1007/s10904-020-01462-4

    Article  CAS  Google Scholar 

  53. C. Sabarinathan, P. Karuppasamy, C.T. Vijayakumar, T. Arumuganathan, Development of methylene blue removal methodology by adsorption using molecular polyoxometalate: Kinetics, Thermodynamics and Mechanistic Study. Microchem. J. 146, 315–326 (2019). https://doi.org/10.1016/j.microc.2019.01.015

    Article  CAS  Google Scholar 

  54. K.J. Huang, L. Wang, J. Li, M. Yu, Y.M. Liu, Electrochemical sensing of catechol using a glassy carbon electrode modified with a composite made from silver nanoparticles, polydopamine, and graphene. Microchim. Acta. 180, 751–757 (2013). https://doi.org/10.1007/s00604-013-0988-5

    Article  CAS  Google Scholar 

  55. A.R. Rajamani, S.C. Peter, Novel nanostructured Pt/CeO2@Cu2O carbon-based electrode to magnify the electrochemical detection of the neurotransmitter dopamine and analgesic paracetamol. ACS Appl. Nano Mater. 1, 5148–5157 (2018). https://doi.org/10.1021/acsanm.8b01217

    Article  CAS  Google Scholar 

  56. A.T.E. Vilian, P. Puthiaraj, C.H. Kwak, S.R. Choe, Y.S. Huh, W.S. Ahn, Y.K. Han, Electrochemical determination of quercetin based on porous aromatic frameworks supported Au nanoparticles. Electrochim. Acta. 216, 181–187 (2016). https://doi.org/10.1016/j.electacta.2016.08.150

    Article  CAS  Google Scholar 

  57. J. Rembiesa, H. Gari, J. Engblom, T. Ruzgas, Amperometric monitoring of quercetin permeation through skin membranes. Int. J. Pharm. 496, 636–643 (2015). https://doi.org/10.1016/j.ijpharm.2015.10.073

    Article  CAS  PubMed  Google Scholar 

  58. S.K. Ponnaiah, P. Periakaruppan, A glassy carbon electrode modified with a copper tungstate and polyaniline nanocomposite for voltammetric determination of quercetin. Microchim. Acta. 185, 1–7 (2018). https://doi.org/10.1007/s00604-018-3071-4

    Article  CAS  Google Scholar 

  59. Z. Liang, H. Zhai, Z. Chen, S. Wang, H. Wang, S. Wang, A sensitive electrochemical sensor for flavonoids based on a multi-walled carbon paste electrode modified by cetyltrimethyl ammonium bromide-carboxylic multi-walled carbon nanotubes. Sensors Actuators, B Chem. 244, 897–906 (2017). https://doi.org/10.1016/j.snb.2016.12.108

    Article  CAS  Google Scholar 

  60. M. Mosleh, S.M. Ghoreishi, S. Masoum, A. Khoobi, Determination of quercetin in the presence of tannic acid in soft drinks based on carbon nanotubes modified electrode using chemometric approaches. Sensors Actuators, B Chem. 272, 605–611 (2018). https://doi.org/10.1016/j.snb.2018.05.172

    Article  CAS  Google Scholar 

  61. S. Sun, M. Zhang, Y. Li, X. He, A molecularly imprinted polymer with incorporated Graphene oxide for electrochemical determination of quercetin. Sensors (Switzerland). 13, 5493–5506 (2013). https://doi.org/10.3390/s130505493

    Article  CAS  PubMed Central  Google Scholar 

  62. J. Li, J. Qu, R. Yang, L. Qu, P.B. Harrington, A sensitive electrochemical sensor of Quercetin based on graphene quantum dots/gold nanoparticles nanocomposite. Electroanal. 28, 1322–1330 (2016). https://doi.org/10.1002/elan.201500490

    Article  CAS  Google Scholar 

  63. J.V. Piovesan, A. Spinelli, Determination of quercetin in a pharmaceutical sample by square-wave voltammetry using a poly(vinylpyrrolidone)-modified carbon-paste electrode. In: J. Braz. Chem. Soc. Sociedade Brasileira de Quimica, pp. 517–525 (2014). https://doi.org/10.5935/0103-5053.20140019

  64. S. Muthamizh, R. Suresh, K. Giribabu, R. Manigandan, S. Praveen Kumar, S. Munusamy, V. Narayanan, MnWO4 nanocapsules: synthesis, characterization and its electrochemical sensing property. J. Alloys Compd. 619, 601–609 (2015). https://doi.org/10.1016/j.jallcom.2014.09.049

  65. M. Veerapandian, Y.T. Seo, K. Yun, M.H. Lee, Graphene oxide functionalized with silver@silicapolyethylene glycol hybrid nanoparticles for direct electrochemical detection of quercetin. Biosens. Bioelectron. 58, 200–204 (2014). https://doi.org/10.1016/j.bios.2014.02.062

    Article  CAS  PubMed  Google Scholar 

  66. M.L. Yola, N. Atar, Z. Üstündaǧ, A.O. Solak, A novel voltammetric sensor based on p-aminothiophenol functionalized graphene oxide/gold nanoparticles for determining quercetin in the presence of ascorbic acid. J. Electroanal. Chem. 698, 9–16 (2013). https://doi.org/10.1016/j.jelechem.2013.03.016

    Article  CAS  Google Scholar 

  67. S. Fei, J. Chen, S. Yao, G. Deng, D. He, Y. Kuang, Electrochemical behavior of L-cysteine and its detection at carbon nanotube electrode modified with platinum. Anal. Biochem. 339, 29–35 (2005). https://doi.org/10.1016/j.ab.2005.01.002

    Article  CAS  PubMed  Google Scholar 

  68. K. Venkatesh, B. Muthukutty, S.M. Chen, C. Karuppiah, B. Amanulla, C.C. Yang, R. Sayee Kannan, Nanomolar level detection of non-steroidal antiandrogen drug flutamide based on ZnMn2O4 nanoparticles decorated porous reduced graphene oxide nanocomposite electrode. J. Hazard. Mater. 405, 124096 (2021). https://doi.org/10.1016/j.jhazmat.2020.124096

Download references

Acknowledgements

The author thanks the Post Graduate and Research Department of Chemistry, Post graduate and Research Department of Chemistry, Vivekananda College, Madurai 625234, Tamil Nadu, India, for providing laboratory facilities to carry out the present work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. Karuppasamy or V. Rajapandian.

Ethics declarations

Conflict of Interest

All authors have participated in the conception, design, analysis, and interpretation of the data; drafting and revision of the article; and approval of the final version. This manuscript has not been submitted to any other journal or under review. The authors have not used any financial assistance or fund to carry out this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 954 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karuppasamy, P., Karthika, A., Senthilkumar, S. et al. An Efficient and Highly Sensitive Amperometric Quercetin Sensor Based on a Lotus Flower Like SeO2-Decorated rGO Nanocomposite Modified Glassy Carbon Electrode. Electrocatalysis 13, 269–282 (2022). https://doi.org/10.1007/s12678-022-00707-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-022-00707-9

Keywords

Navigation