Skip to main content
Log in

Ultra-sensitive amperometric determination of quercetin by using a glassy carbon electrode modified with a nanocomposite prepared from aminated graphene quantum dots, thiolated β-cyclodextrin and gold nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Thiolated β-cyclodextrin functionalized gold nanoparticles (Au-β-CDs) with layered wrinkled flower structure were prepared. Au-β-CDs were electrostatically combined with protonated aminated graphene quantum dots (NH2-GQDs) to form a nanocomposite with better supramolecular recognition, conductivity, catalysis and dispersion properties. For constructing a quercetin (QU) sensor, the nanocomposites were one-step electrodeposited by a cyclic voltammetry (CV) method onto a glassy carbon electrode to form a stable film. Under optimized conditions, the sensor showed a wide linear response range of 1–210 nM, with a lower detection limit of 285 pM. At the same time, flavonoids with similar structures hardly interfere with the determination of QU. The sensor has been used to determine QU in honey, tea, honeysuckle and human serum with satisfactory results.

Schematic representation of the fabrication of an ultrasensitive quercetin electrochemical sensor based on aminated graphene quantum dots, thiolated β-cyclodextrin and gold nanoparticles (NH2-GQDs/Au-β-CD/GCE).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kan X, Zhang T, Zhong M, Lu X (2016) CD/AuNPs/MWCNTs based electrochemical sensor for quercetin dual-signal detection. Biosens Bioelectron 77:638–643

    Article  CAS  Google Scholar 

  2. Song T-Q, Yuan K, Qiao W-Z, Shi Y, Dong J, Gao H-L, Yang X-P, Cui J-Z, Zhao B (2019) Water stable [Tb4] cluster-based metal–organic framework as sensitive and recyclable luminescence sensor of Quercetin. Anal Chem 91(4):2595–2599

    Article  CAS  Google Scholar 

  3. Xu M, Pirtskhalava T, Farr JN, Weigand BM, Palmer AK, Weivoda MM, Inman CL, Ogrodnik MB, Hachfeld CM, Fraser DG (2018) Senolytics improve physical function and increase lifespan in old age. Nat Med 24(8):1246–1256

    Article  CAS  PubMed Central  Google Scholar 

  4. Gibellini L, Pinti M, Nasi M, Montagna JP, De Biasi S, Roat E, Bertoncelli L, Cooper EL, Cossarizza A (2011) Quercetin and cancer chemoprevention. Evid Based Complement Alternat Med 2011:591356

    Article  PubMed Central  Google Scholar 

  5. Wang C, Zuo Y (2011) Ultrasound-assisted hydrolysis and gas chromatography–mass spectrometric determination of phenolic compounds in cranberry products. Food Chem 128(2):562–568

    Article  CAS  Google Scholar 

  6. Zou Y, Yan F, Zheng T, Shi D, Sun F, Yang N, Chen L (2015) Highly luminescent organosilane-functionalized carbon dots as a nanosensor for sensitive and selective detection of quercetin in aqueous solution. Talanta 135:145–148

    Article  CAS  Google Scholar 

  7. Song T-Q, Yuan K, Qiao W-Z, Shi Y, Dong J, Gao H-L, Yang X, Cui J-Z, Zhao B (2019) A water stable [Tb4] cluster-based metal-organic framework as sensitive and recyclable luminescence sensor of quercetin. Anal Chem 91(4):2595–2599

    Article  CAS  Google Scholar 

  8. Wang W, Lin P, Ma L, Xu K, Lin X (2016) Separation and determination of flavonoids in three traditional Chinese medicines by capillary electrophoresis with amperometric detection. J Sep Sci 39(7):1357–1362

    Article  CAS  Google Scholar 

  9. Chen G, Zhang H, Ye J (2000) Determination of rutin and quercetin in plants by capillary electrophoresis with electrochemical detection. Anal Chim Acta 423(1):69–76

    Article  CAS  Google Scholar 

  10. Chen Y, Huang W, Chen K, Zhang T, Wang Y, Wang J (2019) Facile fabrication of electrochemical sensor based on novel core-shell PPy@ ZIF-8 structures: enhanced charge collection for quercetin in human plasma samples. Sensors Actuators BChem 290:434–442

    Article  CAS  Google Scholar 

  11. Yang L, Xu B, Ye H, Zhao F, Zeng B (2017) A novel quercetin electrochemical sensor based on molecularly imprinted poly (para-aminobenzoic acid) on 3D Pd nanoparticles-porous graphene-carbon nanotubes composite. Sensors Actuators B Chem 251:601–608

    Article  CAS  Google Scholar 

  12. Zhang W, Zong L, Geng G, Li Y, Zhang Y (2018) Enhancing determination of quercetin in honey samples through electrochemical sensors based on highly porous polypyrrole coupled with nanohybrid modified GCE. Sensors Actuators B Chem 257:1099–1109

    Article  CAS  Google Scholar 

  13. Zhang Z, Gu S, Ding Y, Shen M, Jiang L (2014) Mild and novel electrochemical preparation of β-cyclodextrin/graphene nanocomposite film for super-sensitive sensing of quercetin. Biosens Bioelectron 57:239–244

    Article  CAS  Google Scholar 

  14. Zhou Z, Gu C, Chen C, Zhao P, Xie Y, Fei J (2019) An ultrasensitive electrochemical sensor for quercetin based on 1-pyrenebutyrate functionalized reduced oxide graphene/mercapto-β-cyclodextrin/Au nanoparticles composite film. Sensors Actuators B Chem 288:88–95

    Article  CAS  Google Scholar 

  15. Wu D, Kong Y (2019) Dynamic interaction between host and guest for enantioselective recognition: application of β-cyclodextrin-based charged catenane as electrochemical probe. Anal Chem 91(9):5961–5967

    Article  CAS  Google Scholar 

  16. Murugan E, Kumar K (2019) Fabrication of SnS/TiO2@GO composite coated glassy carbon electrode for concomitant determination of paracetamol, tryptophan, and caffeine in pharmaceutical formulations. Anal Chem 91(9):5667–5676

    Article  CAS  Google Scholar 

  17. Ikuta D, Hirata Y, Wakamori S, Shimada H, Tomabechi Y, Kawasaki Y, Ikeuchi K, Hagimori T, Matsumoto S, Yamada H (2019) Conformationally supple glucose monomers enable synthesis of the smallest cyclodextrins. Science 364(6441):674–677

    Article  CAS  Google Scholar 

  18. Guo Y, Guo S, Ren J, Zhai Y, Dong S, Wang E (2010) Cyclodextrin functionalized graphene nanosheets with high supramolecular recognition capability: synthesis and host− guest inclusion for enhanced electrochemical performance. ACS Nano 4(7):4001–4010

    Article  CAS  Google Scholar 

  19. Szente L, Szemán J (2013) Cyclodextrins in analytical chemistry: host–guest type molecular recognition. Anal Chem 85(17):8024–8030

    Article  CAS  Google Scholar 

  20. Niu X, Mo Z, Yang X, Sun M, Zhao P, Li Z, Ouyang M, Liu Z, Gao H, Guo R, Liu N (2018) Advances in the use of functional composites of β-cyclodextrin in electrochemical sensors. Microchim Acta 185(7):328–345

    Article  Google Scholar 

  21. Xue Q, Liu Z, Guo Y, Guo S (2015) Cyclodextrin functionalized graphene–gold nanoparticle hybrids with strong supramolecular capability for electrochemical thrombin aptasensor. Biosens Bioelectron 68:429–436

    Article  CAS  Google Scholar 

  22. Liu Z, Xue Q, Guo Y (2017) Sensitive electrochemical detection of rutin and isoquercitrin based on SH-β-cyclodextrin functionalized graphene-palladium nanoparticles. Biosens Bioelectron 89:444–452

    Article  CAS  Google Scholar 

  23. Gupta V, Chaudhary N, Srivastava R, Sharma GD, Bhardwaj R, Chand S (2011) Luminscent graphene quantum dots for organic photovoltaic devices. J Am Chem Soc 133(26):9960–9963

    Article  CAS  Google Scholar 

  24. Tan F, Cong L, Li X, Zhao Q, Zhao H, Quan X, Chen J (2016) An electrochemical sensor based on molecularly imprinted polypyrrole/graphene quantum dots composite for detection of bisphenol A in water samples. Sensors Actuators B Chem 233:599–606

    Article  CAS  Google Scholar 

  25. Li J, Qu J, Yang R, Qu L, de B Harrington P (2016) A sensitive and selective electrochemical sensor based on graphene quantum dot/gold nanoparticle nanocomposite modified electrode for the determination of quercetin in biological samples. Electroanalysis 28(6):1322–1330

    Article  CAS  Google Scholar 

  26. Hou J, Bei F, Wang M, Ai S (2013) Electrochemical determination of malachite green at graphene quantum dots–gold nanoparticles multilayers–modified glassy carbon electrode. J Appl Electrochem 43(7):689–696

    Article  CAS  Google Scholar 

  27. Shadjou N, Hasanzadeh M, Talebi F, Marjani AP (2016) Integration of β-cyclodextrin into graphene quantum dot nano-structure and its application towards detection of vitamin C at physiological pH: a new electrochemical approach. Mater Sci Eng C Mater Biol Appl 67:666–674

    Article  CAS  Google Scholar 

  28. Faridbod F, Sanati AL (2019) Graphene quantum dots in electrochemical sensors/biosensors. Curr Anal Chem 15(2):103–123

    Article  CAS  Google Scholar 

  29. Huang S, Lu S, Huang C, Sheng J, Su W, Zhang L, Xiao Q (2015) Sensitive and selective stripping voltammetric determination of copper (II) using a glassy carbon electrode modified with amino-reduced graphene oxide and β-cyclodextrin. Microchim Acta 182(15–16):2529–2539

    Article  CAS  Google Scholar 

  30. Kumar A, Saikat M, Selvakannan PR, Renu P, Mandale AB, Sastry M (2003) Investigation into the interaction between surface-bound alkylamines and gold nanoparticles. Langmuir 19:6277–6282

    Article  CAS  Google Scholar 

  31. Tang J, Huang R, Zheng S, Jiang S, Yu H, Li Z, Wang J (2019) A sensitive and selective electrochemical sensor based on graphene quantum dots/gold nanoparticles nanocomposite modified electrode for the determination of luteolin in peanut hulls. Microchem J 145:899–907

    Article  CAS  Google Scholar 

  32. Xu B, Yang L, Zhao F, Zeng B (2017) A novel electrochemical quercetin sensor based on Pd/MoS2-ionic liquid functionalized ordered mesoporous carbon. Electrochim Acta 247:657–665

    Article  CAS  Google Scholar 

  33. Veerapandian M, Seo Y-T, Yun K, Lee M-H (2014) Graphene oxide functionalized with silver@silica–polyethylene glycol hybrid nanoparticles for direct electrochemical detection of quercetin. Biosens Bioelectron 58:200–204

    Article  CAS  Google Scholar 

  34. Manokaran J, Muruganantham R, Muthukrishnaraj A, Balasubramanian N (2015) Platinum-polydopamine@SiO2 nanocomposite modified electrode for the electrochemical determination of quercetin. Electrochim Acta 168:16–24

    Article  CAS  Google Scholar 

  35. Yola ML, Atar N (2014) A novel voltammetric sensor based on gold nanoparticles involved in p-aminothiophenol functionalized multi-walled carbon nanotubes: application to the simultaneous determination of quercetin and rutin. Electrochim Acta 119:24–31

    Article  CAS  Google Scholar 

  36. Abdullah AA, Yardim Y, Senturk Z (2018) The performance of cathodically pretreated boron-doped diamond electrode in cationic surfactant media for enhancing the adsorptive stripping voltammetric determination of catechol-containing flavonoid quercetin in apple juice. Talanta 187:156–164

    Article  CAS  Google Scholar 

  37. Şenocak A, Köksoy B, Demirbaş E, Basova T, Durmuş M (2018) 3D SWCNTs-coumarin hybrid material for ultra-sensitive determination of quercetin antioxidant capacity. Sensors Actuators B Chem 267:165–173

    Article  Google Scholar 

  38. Yola ML, Gupta VK, Eren T, Şen AE, Atar N (2014) A novel electro analytical nanosensor based on graphene oxide/silver nanoparticles for simultaneous determination of quercetin and morin. Electrochim Acta 120:204–211

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is supported by the National Natural Science Foundation of China (31701613, 21874114, 21475114).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yixi Xie or Junjie Fei.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1756 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Zhao, P., Wang, C. et al. Ultra-sensitive amperometric determination of quercetin by using a glassy carbon electrode modified with a nanocomposite prepared from aminated graphene quantum dots, thiolated β-cyclodextrin and gold nanoparticles. Microchim Acta 187, 130 (2020). https://doi.org/10.1007/s00604-019-4106-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-4106-1

Keywords

Navigation