Skip to main content
Log in

A Simulation Study of Pt Particle Degradation During Potential Cycling Using a Dissolution/Deposition Model

  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Polymer electrolyte fuel cells suffer from reduced lifetimes due to degradation of their Pt catalysts during operation. To understand the fundamental process of the Pt degradation, we proposed a model for the Pt particle growth based on the Gibbs-Thomson equation, which asserts that smaller particles tend to be dissolved in preference to the larger ones. We simulated the particle distribution changes during rectangular potential cycling between 0.6 and 1.0 V vs. the reversible hydrogen electrode at 25 °C under a N2 atmosphere. The parameters in our model were determined by fitting to the experimental data. The calculation results and experimental data for the changes in the particle distribution and electrochemically active surface area were in good agreement. Additionally, the particle distribution change under different conditions such as the potential range and the initial particle size distribution could be simulated by changing the parameters in the model. When the initial size standard deviation is low, particle growth does not readily occur because the differences in the particle size are small. When the initial standard deviation in the particle size is large, the particle growth is accelerated by the large difference in the particle sizes, because small particles more readily dissolve. Finally, the particle distribution becomes stable and the degradation levels off. It was suggested that the particle growth could be anticipated by using our model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Shao-Horn, W.C. Sheng, S. Chen, P.J. Ferreira, E.F. Holby, D. Morgan, Top Catal. 46, 285 (2007)

    Article  CAS  Google Scholar 

  2. S. Mitsushima, Y. Koizumi, S. Uzuka, K. Ota, Electrochim. 54, 455 (2008)

    Article  CAS  Google Scholar 

  3. S. Chen, H.A. Gasteiger, K. Hayakawa, T. Tada, Y. Shao-Horn, J. Electrochem. Soc. 157(1), A82 (2010)

    Article  CAS  Google Scholar 

  4. S. Mitsushima, S. Kawahara, K. Ota, N. Kamiya, J. Electrochem. Soc. 154(2), B153 (2007)

    Article  CAS  Google Scholar 

  5. P.J. Ferreira, G.J. la O’, Y. Shao-Horn, D. Morgan, R. Makharia, S. Kocha, H.A. Gasteige, J. Electrochem. Soc. 152(11), A2256 (2005)

    Article  Google Scholar 

  6. R.M. Darling, J.P. Meyers, J. Electrochem. Soc. 150(11), A1523 (2003)

    Article  CAS  Google Scholar 

  7. S.G. Rinaldo, J. Stumper, M. Eikerling, J. Phys. Chem. C 114, 5773 (2010)

    Article  CAS  Google Scholar 

  8. M.K. Debe, A.K. Schmoeckel, G.D. Vernstrom, R. Atanasoski, J. Power Sources 161, 1002 (2006)

    Article  CAS  Google Scholar 

  9. M. Uchimura, S. Sugawara, Y. Suzuki, J. Zhang, S. Kocha, ECS Trans. 16(2), 225 (2008)

    Article  CAS  Google Scholar 

  10. A.A. Franco, M. Tembely, J. Electrochem. Soc. 154(7), B712 (2007)

    Article  CAS  Google Scholar 

  11. W. Schmittinger, A. Vahidi, J. Power Sources 180, 1 (2008)

    Article  CAS  Google Scholar 

  12. H. Imai, K. Izumi, M. Matsumoto, Y. Kubo, K. Kato, Y. Imai, J. Am. Chem. Soc. 131, 6293 (2009)

    Article  CAS  Google Scholar 

  13. L. Xing, M.A. Hossain, M. Tian, D. Beauchemin, K.T. Adjemian, G. Jerkiewicz, Electrocatalysis 5, 96 (2014)

    Article  CAS  Google Scholar 

  14. F. Hiraoka, K. Matsuzawa, S. Mitsushima, Electrocatalysis 4, 10 (2013)

    Article  CAS  Google Scholar 

  15. R.M. Darling, J.P. Meyers, J. Electrochem. Soc. 152(1), A242 (2005)

    Article  CAS  Google Scholar 

  16. W. Bi, T.F. Fuller, J. Power Sources 178, 188 (2008)

    Article  CAS  Google Scholar 

  17. W. Bi, Q. Sun, Y. Deng, T.F. Fuller, Electrochim. Acta 54, 1826 (2009)

    Article  CAS  Google Scholar 

  18. H. Yoshida, Phys. Lett. A 150, 262 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Kohno.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hiraoka, F., Kohno, Y., Matsuzawa, K. et al. A Simulation Study of Pt Particle Degradation During Potential Cycling Using a Dissolution/Deposition Model. Electrocatalysis 6, 102–108 (2015). https://doi.org/10.1007/s12678-014-0225-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-014-0225-y

Keywords

Navigation