Skip to main content
Log in

First-principles calculations of the dissolution and coalescence properties of Pt nanoparticle ORR catalysts: The effect of nanoparticle shape

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The degradation of Pt nanoparticles (NPs) in fuel cell cathodes leads to the loss of the precious metal catalyst. While the effect of NP size on Pt dissolution has been studied extensively, the influence of NP shape is largely unexplored. Because of the recent development of experimental methods to control the shape of metal NPs, rational guidelines/insights on the shape effects on NP stability are imperative. In this study, first-principles calculations based on density functional theory were conducted to determine the stability of 1–2 nm Pt NPs against Pt dissolution and coalescence with respect to NP shape. Toward dissolution, the stability of the Pt NPs increases in the following order: Hexagonal close-packed < icosahedral < cuboctahedral < truncated octahedral. This trend is attributed to the synergy of the oxygen adsorption strength and the local coordination of the Pt atoms. With respect to coalescence, the size of a NP is related to its propensity to coalesce or detach/migrate to form larger particles. The stability of the Pt NPs was found to increase in the following order: Hexagonal close-packed < truncated octahedral < cuboctahedral < icosahedral, and was correlated with the cohesive energies of the particles. By combining the characteristic stabilities of the shapes, new “metal-interfaced” Pt-based coreshell architectures were proposed that should be more stable than pure Pt nanoparticles with respect to both dissolution and coalescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lou, J.; Han, L.; Kariuki, N.; Wang, L.; Zhong, C. J.; He, T. Synthesis and characterization of monolayer capped PtVFe nanoparticles with controllable sizes and composition. Chem. Mater. 2005, 17, 5282–5290.

    Article  Google Scholar 

  2. Lou, J.; Kariuki, N.; Han, L.; Wang, L.; Zhong, C. J.; He, T. Preparation and characterization of carbon-supported PtVFe electrocatalysts. Electrochim. Acta. 2006, 51, 4821–4827.

    Article  Google Scholar 

  3. Meier, J. C.; Galeano, C.; Katsounaros, I.; Witte, J.; Bongard, H. J.; Topalov, A. A.; Baldizzone, C.; Mezzavilla, S.; Schüth, F.; Mayrhofer, K. J. J. Design criteria for stable Pt/C fuel cell catalysts. Beilstein J. Nanotechnol. 2014, 5, 44–67.

    Article  Google Scholar 

  4. Matsumoto, M.; Miyazaki, M. T.; Imai, H. Oxygen-enhanced dissolution of platinum in acidic electrochemical environments. J. Phys. Chem. C. 2011, 115, 11163–11169.

    Article  Google Scholar 

  5. Ota, K; Koizumi, Y.; Mitsushima, S.; Kamiya, N. Dissolution of platinum in acidic media durability-catalyst activity & stability. ECS Trans. 2006, 3, 619–624.

    Article  Google Scholar 

  6. Escaño, M. C. S.; Kasai, H. First-principles study on surface structure, thickness and composition dependence of the stability of Ptskin/Pt3Co oxygen-reduction-reaction catalysts. J. Power Sources 2014, 247, 562–571.

    Article  Google Scholar 

  7. Tao, A. R.; Habas, S.; Yang, P. Shape control of colloidal metal nanocrystals. Small 2008, 3, 310–325.

    Article  Google Scholar 

  8. Peng, Z.; Yang, H. Designer platinum nanoparticles: Control of shape, composition in alloy, nanostructure and electrocatalytic property. Nanotoday 2009, 4, 143–164.

    Article  Google Scholar 

  9. Niu, W.; Xu, G. Crystallographic control of noble metal nanocrystals. Nanotoday 2011, 6, 265–285.

    Article  Google Scholar 

  10. Teranishi, T.; Kurita, R.; Miyake, M. Shape control of Pt nanoparticles. J. Inorg. And Organomet. Poly. 2000, 10, 145–156.

    Article  Google Scholar 

  11. Long, N. V.; Asaka, T.; Matsubara, T.; Nogami, M. Shape-controlled synthesis of Pt-Pd core-shell nanoparticles exhibiting polyhedral morphologies by modified polyol method. Acta. Mater. 2011, 59, 2901–2907.

    Article  Google Scholar 

  12. Narayanan, R.; El-Sayed, M. A. Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution. Nano Lett. 2004, 4, 1343–1348.

    Article  Google Scholar 

  13. Zheng, F.; Wong, W. T.; Yung, K. F. Facile design of Au@Pt core shell nanostructures: Formation of Pt submonolayers with tunable coverage and their applications in electrocatalysis. Nano Res. 2014, 7, 410–417.

    Article  Google Scholar 

  14. Si, W.; Li, J.; Li, H.; Li, S.; Yin, J.; Huan, X.; Xinwen, G.; Song, Y. Light-controlled synthesis of uniform platinum nano-dendrites with markedly enhanced electrocatalytic activity. Nano Res. 2013, 6, 720–725.

    Article  Google Scholar 

  15. Devivaraprasad, R.; Ramesh, R.; Naresh, N.; Kar, T.; Singh, R. K.; Neergat, M. Oxygen reduction reaction and peroxide generation on shape-controlled and polycrystalline platinum nanoparticles in acidic and alkaline electrolytes. Langmuir 2014, 30, 8995–9006.

    Article  Google Scholar 

  16. Porter, N. S.; Wu, H.; Quan, Z.; Fang, J. Shape-control and electrocatalytic activity-enhancement of Pt-based bimetallic nanocrystals. Acc. Chem. Res. 2012, 46, 1867–1877.

    Article  Google Scholar 

  17. Leong, G. J.; Schulze, M. C.; Strand, M. B.; Maloney, D.; Frisco, S. L.; Dinh H. N.; Pivovar, B.; Richards, R. M. Shape-directed platinum nanoparticle synthesis-nanoscale design of novel catalysts. Appl. Organometal. Chem. 2014, 28, 1–17.

    Article  Google Scholar 

  18. Gumeci, C.; Marathe, A.; Behrens, R. L.; Chaudhuri, J.; Korzeniewski, C. Solvothermal synthesis and electrochemical characterization of shape-controlled Pt nanocrystals. J. Phys. Chem. C. 2014, 118, 14433–14440.

    Article  Google Scholar 

  19. An, W.; Liu, P. Size and shape effects of Pd@Pt core-shell nanoparticles: Unique role of surface contraction and local structural flexibility. J. Phys. Chem. C. 2013, 117, 16144–16149.

    Article  Google Scholar 

  20. Wang, C.; van der Vliet, D.; More, K. L.; Zaluzec, N. J.; Peng, S.; Sun, S.; Daimon, H.; Wang, G.; Greeley, J.; Pearson, J.; Paulikas, A. P.; Karapetrov, G.; Strmcnik, D.; Markovic, N. M.; Stamenkovic, V. R. Multimetallic Au/FePt3 nanoparticles as highly durable electrocatalyst. Nano Lett. 2011, 11, 919–926.

    Article  Google Scholar 

  21. Qiao, Y.; Li, C. H. Nanostructured catalysts in fuel cell. J. Mater. Chem. 2011, 21, 4027–4036.

    Article  Google Scholar 

  22. Noh, S. H.; Seo, M. H.; Seo, J. K.; Fischer, P.; Han. B. First principles computational study on the electrochemical stability of Pt-Co nanocatalysts. Nanoscale 2013, 5, 8625–8633.

    Article  Google Scholar 

  23. Seo, J. K.; Khetan, A.; Seo, M. H.; Kim, H.; Han, B. First-principles thermodynamic study of the electrochemical stability of Pt nanoparticles in fuel cell applications. J. Power Sources 2013, 238, 137–143.

    Article  Google Scholar 

  24. Makino, K.; Chiba, M.; Koido, T. Size-dependent activity of platinum nanoparticles for oxygen reduction reaction in a PEFC with a multiscale approach. ECS Trans. 2010, 33, 105–114.

    Article  Google Scholar 

  25. Kikuchi, H.; Ouchida, W.; Nakamura, M.; Goto, C.; Yamada, M.; Hoshi, N. Atomic force microscopy of cubic Pt nanoparticles in electrochemical environments. Elechtrochem. Comm. 2010, 12, 544–547.

    Article  Google Scholar 

  26. Hohenberg, P.; Kohn, W. Inhomogenous electron gas. Phys. Rev. 1964, 136, B864–B871.

    Article  Google Scholar 

  27. Kohn W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133–A1138.

    Article  Google Scholar 

  28. Kresse, G.; Furthmüller, J. Non-Fermi-liquid theory of a compactified Anderson single impurity model. Phys. Rev. B 1996, 54, 1169–1186.

    Article  Google Scholar 

  29. Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

    Article  Google Scholar 

  30. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  Google Scholar 

  31. Blochl, P. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  Google Scholar 

  32. Kresse, G.; Joubert, J. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  Google Scholar 

  33. Larsen, A. H.; Kleis, J.; Thygesen, K. S.; Nørskov, J. K.; Jacobsen, K. W. Electronic shell structure and chemisorption on gold nanoparticles. Phys. Rev. B 2011, 84, 245429.

    Article  Google Scholar 

  34. Fajín, J. L. C.; Bruix, A.; Natália, M.; Cordeiro, D. S.; Gomes, J. R. B.; Illas, F. Density functional theory model study of size and structure effects on water dissociation by platinum nanoparticles. J. Chem. Phys. 2012, 137, 034701–034711.

    Article  Google Scholar 

  35. Frenkel, A. Solving the 3D structure of metal nanoparticles. Z. Kristallogr. 2007, 222, 605–611.

    Article  Google Scholar 

  36. Beale, A. M.; Weckhuysen, B. M. EXAFS as tool to interrogate the size and shape of mono and bimetallic catalyst nanoparticles. Phys. Chem. Chem. Phys. 2010, 12, 5562–5574.

    Article  Google Scholar 

  37. Teter, M. P.; Payne, M. C.; Allan, D. C. Solution of the Schrödinger equation for large systems. Phys. Rev. B 1989, 40, 12255–12263.

    Article  Google Scholar 

  38. Kittel, C. Introduction to Solid State Physics; Wiley: New York, 1996.

    Google Scholar 

  39. Wang, L.; Roudgar, A.; Eikerling, M. Ab initio study of stability and site-specific oxygen adsorption energies of Pt nanoparticles. J. Phys. Chem. C 2009, 113, 17989–17996.

    Article  Google Scholar 

  40. Da Silva, J. L. F; Stampfl, C.; Scheffler, M. Converged properties of clean metal surfaces by all-electron first-principles calculations. Surf. Sci. 2006, 600, 703–715.

    Article  Google Scholar 

  41. Darling, R. M.; Meyers, J. P. Kinetic model of platinum dissolution in PEMFC, batteries, fuel cells, and energy conversion. J. Electrochem. Soc. 2003, 150, A1523–A1527.

    Article  Google Scholar 

  42. Wachter, A.; Bohnen, K. P.; Ho, K. M. Structure and dynamics at the Pt(100)-surface. Ann. Physik 1996, 6, 215–223.

    Google Scholar 

  43. Han, B. C.; Miranda, C. R.; Ceder, G. Effect of particle size and surface structure on adsorption of O and OH on platinum nanoparticles: A first-principles study. Phys. Rev. B 2008, 77, 075410.

    Article  Google Scholar 

  44. Wu, J.; Yang, H. Synthesis and electrocatalytic oxygen reduction properties of truncated octahedral Pt3Ni nanoparticles. Nano Res. 2011, 4, 72–82.

    Article  Google Scholar 

  45. Wang, D.; Xin, H. L.; Hovden, R.; Wang, H.; Yu, Y.; Muller, D. A.; Disalvo, F. J.; Abruna, H. D. Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalyts. Nat. Mater. 2013, 12, 81–87.

    Article  Google Scholar 

  46. Takahashi, H.; Horiuchi, Y.; Nagata, T.; Terada, T.; Tabata, T. Electrode catalyst for fuel cell, method for producing the same, and fuel cell using electrode catalyst. US Pat., 8,338, 051, December 25, 2012.

    Google Scholar 

  47. Okaya, K.; Yano, H.; Kakinuma, K.; Watanabe, M.; Uchida, H. Temperature dependence of oxygen reduction reaction activity at stabilized Ptskin-PtCo alloy/graphitized carbon black catalysts prepared by a modified nanocapsule method. Appl. Mater. Interfaces 2012, 4, 6982–6991.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Clare Sison Escaño.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Escaño, M.C.S. First-principles calculations of the dissolution and coalescence properties of Pt nanoparticle ORR catalysts: The effect of nanoparticle shape. Nano Res. 8, 1689–1697 (2015). https://doi.org/10.1007/s12274-014-0670-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0670-1

Keywords

Navigation