Skip to main content
Log in

Platinum Electro-dissolution in Acidic Media upon Potential Cycling

  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Electro-dissolution of Pt(poly) electrodes is examined under potential cycling conditions in relation to the applied lower and upper potential limits (E L, E U), the potential cycling range (ΔE), the number of potential cycles (n), the exposure time (t exposure), and the electrolyte temperature (T); the amount of electro-dissolved Pt (m Pt) present in the electrolyte is analyzed using inductively coupled plasma mass spectrometry. Monitoring the potential of working and counter electrodes (E WE, E CE) reveals that in many instances E CE is higher than E WE, indicating that a surface oxide also develops on CE and a considerable amount of electro-dissolved Pt originates from CE. Thus, in the case of research employing a two-compartment cell, the amount of electro-dissolved Pt corresponds to the species originating from both WE and CE. The application of a three-compartment cell, with a Nafion membrane used to separate the WE and CE compartments, allows the quantification of electro-dissolved Pt originating only from WE or CE. The amount of electro-dissolved Pt is much greater in the two-compartment cell than in the three-compartment one, when E CE covers a broad potential range that includes the regions of Pt oxide formation and reduction; this provides clear evidence that CE makes a major contribution to total amount of electro-dissolved Pt. The value of m Pt depends on E L and E U that define ΔE. In the case of 0.10 ≤ ΔE ≤ 0.20 V, there is no electro-dissolution of Pt; in the case of ΔE = 0.30, there is slight electro-dissolution of Pt; and in the case of 0.40 ≤ ΔE ≤ 0.70 V, there is significant electro-dissolution of Pt. The value of m Pt increases with the magnitude of ΔE. The greatest value of m Pt is observed when ΔE = 0.50 V and when ΔE covers the potential range of Pt oxide formation and reduction, and the region of interfacial place exchange (1.10 ≤ E ≤ 1.20 V). Temperature variation has a slight impact on the electro-dissolution of Pt and for given ΔE and n the increase in T slightly decreases m Pt. An analysis of the impact of s on the electro-dissolution of Pt reveals that the process is only slightly greater at s = 25 mV s–1 than at s = 50, 100, 200, or 500 mV s–1. For a given t exposure, the value of m Pt is greater for s = 500 mV s–1 than for lower values of s because a high value of s translates into a larger number of oxide formation-reduction events. The quantity of electro-dissolved Pt within 5,000 potential cycles varies from 0.12 to 4.91 monolayers (MLs) of Pt, depending on E L, E U, and ΔE. Eleven reactions can be used to explain anodic and cathodic electro-dissolution as well as chemical dissolution of Pt. Yet, it is impossible to explain the cathodic dissolution of Pt without making an arbitrary assumption that anodic polarization of Pt in the 0.85 ≤ E ≤ 1.40 V range generates PtO2, instead of PtO as reported in earlier literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. V. Stamenković, T.J. Schmidt, P.N. Ross, N.M. Marković, J. Phys. Chem. B 106, 11970 (2002)

    Article  Google Scholar 

  2. U.A. Paulus, A. Wokaun, G.G. Scherer, T.J. Schmidt, V. Stamenkovic, N.M. Markovic, P.N. Ross, Electrochim. Acta 47, 3787 (2002)

    Article  CAS  Google Scholar 

  3. S. Koh, C. Yu, P. Mani, R. Srivastava, P. Strasser, J. Power Sources 172, 50 (2007)

    Article  CAS  Google Scholar 

  4. G. Wu, K.L. More, C.M. Johnston, P. Zelenay, Science 332, 443 (2011)

    Article  CAS  Google Scholar 

  5. A.P. Yadav, A. Nishikata, T. Tsuru, J. Electrochem. Soc. 156, C253 (2009)

    Article  CAS  Google Scholar 

  6. A.P. Yadav, A. Nishikata, T. Tsuru, Electrochim. Acta 52, 7444 (2007)

    Article  CAS  Google Scholar 

  7. K. Kinoshita, J.T. Lundquist, P. Stonehart, J. Electroanal. Chem. Interfacial Electrochem. 48, 157 (1973)

    Article  CAS  Google Scholar 

  8. S. Mitsushima, S. Kawahara, K. Ota, N. Kamiya, J. Electrochem. Soc. 154, B153 (2007)

    Article  CAS  Google Scholar 

  9. K. Ota, S. Nishigori, N. Kamiya, J. Electroanal. Chem. 257, 205 (1988)

    Article  CAS  Google Scholar 

  10. G. Jerkiewicz, G. Vatankhah, J. Lessard, M.P. Soriaga, Y.-S. Park, Electrochim. Acta 49, 1451 (2004)

    CAS  Google Scholar 

  11. G. Tremiliosi-Filho, G. Jerkiewicz, B.E. Conway, Langmuir 8, 658 (1992)

    Article  CAS  Google Scholar 

  12. B.E. Conway, G. Tremiliosi-Filho, G. Jerkiewicz, J. Electroanal. Chem. 297, 435 (1991)

    Article  CAS  Google Scholar 

  13. T. Biegler, R. Woods, J. Electroanal. Chem. 20, 73 (1969)

    Article  CAS  Google Scholar 

  14. T. Biegler, D.A.J. Rand, R. Woods, J. Electroanal. Chem. Interfacial Electrochem. 29, 269 (1971)

    Article  CAS  Google Scholar 

  15. H. Angerstein-Kozlowska, in Comprehensive Treatise of Electrochemistry, vol. 9, ch. 1, ed. by E. Yeager, J.O’M. Bockris, B.E. Conway (Plenum Press, New York, 1984)

  16. H. Angerstein-Kozlowska, B.E. Conway, W.B.A. Sharp, J. Electroanal. Chem. Interfacial Electrochem. 43, 9 (1973)

    Article  CAS  Google Scholar 

  17. L. Xing, G. Jerkiewicz, D. Beauchemin, Anal. Chim. Acta. 785, 16 (2013)

    Article  CAS  Google Scholar 

  18. F. Hiraoka, K. Matsuzawa, S. Mitsushima, Electrocatalysis 4, 10 (2013)

    Article  CAS  Google Scholar 

  19. A.A. Topalov, I. Katsounaros, M. Auinger, S. Cherevko, J.C. Meier, S.O. Klemm, K.J.J. Mayrhofer, Angew. Chem. Int. Ed. 51, 12613 (2012)

    Article  CAS  Google Scholar 

  20. S. Mitsushima, Y. Koizumi, S. Uzuka, K.-I. Ota, Electrochim. Acta 54, 455 (2008)

    Article  CAS  Google Scholar 

  21. A.J. Bard, R. Parsons, J. Jordan, Standard Potentials in Aqueous Solution (Dekker, New York, 1985)

    Google Scholar 

  22. A. Zolfaghari, B.E. Conway, G. Jerkiewicz, Electrochim. Acta 47, 1173 (2002)

    Article  CAS  Google Scholar 

  23. M. Alsabet, M. Grden, G. Jerkiewicz, J. Electroanal. Chem. 589, 120 (2006)

    Article  CAS  Google Scholar 

  24. G. Jerkiewicz, M. Alsabet, M. Grden, H. Varela, G. Tremiliosi-Filho, J. Electroanal. Chem. 625, 172 (2009)

    Article  CAS  Google Scholar 

  25. P.J. Kulesza, W. Lu, L.R. Faulkner, J. Electroanal. Chem. 336, 35 (1992)

    Article  CAS  Google Scholar 

  26. L.I. Yanson, P. Rodriguez, N. Garcia-Araez, R.V. Mom, F.D. Tichelaar, M.T.M. Koper, Angew. Chem. Int. Ed. 50, 6346 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support toward this project from the Nissan Motor Company through the Nissan Technical Center North America. They also acknowledge infrastructure support from the Natural Sciences and Engineering Research Council of Canada, Canada Foundation for Innovation, and Queen’s University. We acknowledge stimulating discussion with members of the Electrocatalysis Group of the Max Planck Society for the Advancement of Science in Düsseldorf led by K.J.J. Mayrhofer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory Jerkiewicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xing, L., Hossain, M.A., Tian, M. et al. Platinum Electro-dissolution in Acidic Media upon Potential Cycling. Electrocatalysis 5, 96–112 (2014). https://doi.org/10.1007/s12678-013-0167-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-013-0167-9

Keywords

Navigation