Skip to main content
Log in

Improving Curcumin Constraints with pH-Responsive Chitosan Based Graphene Oxide/Montmorillonite Nanohybrid Modified Agarose in Breast Cancer Therapy

  • Research
  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Nanoparticles have promisingly served as therapeutic agents in drug delivery systems to supress side effects while improving the effectiveness of treatment to deadly cancers. The present study aims to fabricate chitosan/agarose/graphene oxide/montmorillonite nanocomposites to serve as drug carriers for the prolonged release of curcumin to suppress MCF7 breast cancer cells. Offering a range of advantages, including biocompatibility and pH-sensitivity, the nanocomposites were synthesized via a water-in-oil-in-water (W/O/W) emulsification technique. Characterization studies were conducted with FTIR and XRD analyses. Dynamic light scattering (DLS) analysis was conducted to measure the mean size of the produced nanoscale emulsions, with zeta potential assessments further performed to characterize the nanocomposites in terms of surface charge. FE-SEM imagery indicated the uniform and flat surface of the synthesized nanocomposites. MTT assay results showed that the nanocomposites were most toxic to MCF7 breast cancer cells. The occurrence of apoptosis to MCF7 breast cancer cells was evident from the flow cytometry findings. Implementing a dialysis procedure, the curcumin was found to be released at a higher rate in acidic media. Altogether, our findings proved that the designed CS/AG/GO/MMT@CUR nanocomposites could be a drug carrier for treating breast cancer cells.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

Notes

  1. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

References

  1. Aghebati-Maleki, A., Dolati, S., Ahmadi, M., Baghbanzhadeh, A., Asadi, M., Fotouhi, A., Yousefi, M., & Aghebati-Maleki, L. (2020). Nanoparticles and cancer therapy: Perspectives for application of nanoparticles in the treatment of cancers. Journal of Cellular Physiology, 235(3), 1962–1972. https://doi.org/10.1002/jcp.29126

    Article  Google Scholar 

  2. Hanahan, D. (2022). Hallmarks of cancer: New dimensions. Cancer Discovery, 12(1), 31–46. https://doi.org/10.1158/2159-8290.CD-21-1059

    Article  Google Scholar 

  3. Sheikh, A., Shadab, Md., & Kesharwani, P. (2022). Aptamer grafted nanoparticle as targeted therapeutic tool for the treatment of breast cancer. Biomedicine & Pharmacotherapy, 146, 112530. https://doi.org/10.1016/j.biopha.2021.112530

    Article  Google Scholar 

  4. Ma, X., & Herbert, Yu. (2006). Cancer issue: Global burden of cancer. The Yale Journal of Biology and Medicine, 79(3–4), 85.

    Google Scholar 

  5. Aboud, K., Meissner, M., Ocen, J., & Jones, R. (2023). Cytotoxic chemotherapy: Clinical aspects. Medicine. https://doi.org/10.1016/j.mpmed.2022.10.005

    Article  Google Scholar 

  6. Petrelli, N. J., Winer, E. P., Brahmer, J., Dubey, S., Smith, S., Thomas, C., Vahdat, L. T., Obel, J., Vogelzang, N., Markman, M., Sweetenham, J. W., Pfister, D., Kris, M. G., Schuchter, L. M., Sawaya, R., Raghavan, D., Ganz, P. A., & Kramer, B. (2009). Clinical cancer advances 2009: Major research advances in cancer treatment, prevention, and screening–A report from the American Society of Clinical Oncology. Journal of Clinical Oncology, 27, 6052–6069.

    Article  Google Scholar 

  7. Dong, P., Rakesh, K. P., Manukumar, H. M., Mohammed, Y. H. E., Karthik, C. S., Sumathi, S., Mallu, P., & Qin, H.-L. (2019). Innovative nano-carriers in anticancer drug delivery-A comprehensive review. Bioorganic Chemistry, 85, 325–336. https://doi.org/10.1016/j.bioorg.2019.01.019

    Article  Google Scholar 

  8. Zadeh, E. S., Ghanbari, N., Salehi, Z., Derakhti, S., Amoabediny, G., Akbari, M., & Tokmedash, M. A. (2023). Smart pH-responsive magnetic graphene quantum dots nanocarriers for anticancer drug delivery of curcumin. Materials Chemistry and Physics, 127336. https://doi.org/10.1016/j.matchemphys.2023.127336

  9. Wicki, A., Witzigmann, D., Balasubramanian, V., & Huwyler, J. (2015). Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications. Journal of Controlled Release, 200, 138–157. https://doi.org/10.1016/j.jconrel.2014.12.030

    Article  Google Scholar 

  10. Shi, J., Kantoff, P. W., Wooster, R., & Farokhzad, O. C. (2017). Cancer nanomedicine: Progress, challenges and opportunities. Nature Reviews Cancer, 17(1), 20–37.

    Article  Google Scholar 

  11. Senapati, S., Mahanta, A. K., Kumar, S., & Maiti, P. (2018). Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduction and Targeted Therapy, 3(1), 7.

    Article  Google Scholar 

  12. Vinothini, K., Rajendran, N. K., Ramu, A., Elumalai, N., & Rajan, M. (2019). Folate receptor targeted delivery of paclitaxel to breast cancer cells via folic acid conjugated graphene oxide grafted methyl acrylate nanocarrier. Biomedicine & Pharmacotherapy, 110, 906–917. https://doi.org/10.1016/j.biopha.2018.12.008

    Article  Google Scholar 

  13. Pooresmaeil, M., & Namazi, H. (2020). pH-sensitive ternary Fe3O4/GQDs@ G hybrid microspheres; Synthesis, characterization and drug delivery application. Journal of Alloys and Compounds, 846, 156419. https://doi.org/10.1016/j.jallcom.2020.156419

    Article  Google Scholar 

  14. Zhao, J., Zhang, Z., & Wang, X. (2020). Fabrication of pH-responsive PAA-NaMnF3@ DOX hybrid nanostructures for magnetic resonance imaging and drug delivery. Journal of Alloys and Compounds, 820, 153142. https://doi.org/10.1016/j.jallcom.2019.153142

    Article  Google Scholar 

  15. Xie, L., Ji, X., Zhang, Qi., & Wei, Y. (2022). Curcumin combined with photodynamic therapy, promising therapies for the treatment of cancer. Biomedicine & Pharmacotherapy, 146, 112567. https://doi.org/10.1016/j.biopha.2021.112567

    Article  Google Scholar 

  16. Kazemi, S., Pourmadadi, M., Yazdian, F., & Ghadami, A. (2021). The synthesis and characterization of targeted delivery curcumin using chitosan-magnetite-reduced graphene oxide as nano-carrier. International Journal of Biological Macromolecules, 186, 554–562. https://doi.org/10.1016/j.ijbiomac.2021.06.184

    Article  Google Scholar 

  17. Samadi, A., Haseli, S., Pourmadadi, M., Rashedi, H., Yazdian, F., & Navaei-Nigjeh, M. (2020). Curcumin-loaded chitosan-agarose-montmorillonite hydrogel nanocomposite for the treatment of breast cancer. In 2020 27th National and 5th International Iranian Conference on Biomedical Engineering (ICBME) (pp. 148–153). IEEE. https://doi.org/10.1109/ICBME51989.2020.9319425

  18. Kumar, S., Kesharwani, S. S., Mathur, H., Tyagi, M., Bhat, G. J., & Tummala, H. (2016). Molecular complexation of curcumin with pH sensitive cationic copolymer enhances the aqueous solubility, stability and bioavailability of curcumin. European Journal of Pharmaceutical Sciences, 82, 86–96. https://doi.org/10.1016/j.ejps.2015.11.010

    Article  Google Scholar 

  19. Esthar, S., Rajesh, J., Prakash, N., Ayyanaar, S., Bhaskar, R., Thanigaivel, S., Webster, T., & Rajagopal, G. (2023). An effective biodegradable curcumin loaded magnetic microsphere: Applications for drug delivery and cancer treatment. Pharmacological Research-Modern Chinese Medicine, 100219. https://doi.org/10.1016/j.prmcm.2023.100219

  20. Javanbakht, S., Pooresmaeil, M., & Namazi, H. (2019). Green one-pot synthesis of carboxymethylcellulose/Zn-based metal-organic framework/graphene oxide bio-nanocomposite as a nanocarrier for drug delivery system. Carbohydrate polymers, 208, 294–301. https://doi.org/10.1016/j.carbpol.2018.12.066

    Article  Google Scholar 

  21. Sedghi, R., Ashrafzadeh, S., & Heidari, B. (2021). pH-sensitive molecularly imprinted polymer based on graphene oxide for stimuli actuated controlled release of curcumin. Journal of Alloys and Compounds, 857, 157603. https://doi.org/10.1016/j.jallcom.2020.157603

    Article  Google Scholar 

  22. Nazir, S., Khan, M. U. A., Al-Arjan, W. S., AbdRazak, S. I., Javed, A., & Kadir, M. R. A. (2021). Nanocomposite hydrogels for melanoma skin cancer care and treatment: In-vitro drug delivery, drug release kinetics and anti-cancer activities. Arabian Journal of Chemistry, 14(5), 103120. https://doi.org/10.1016/j.arabjc.2021.103120

    Article  Google Scholar 

  23. de Oliveira, É. C., et al. (2022). In vitro and in vivo safety profile assessment of graphene oxide decorated with different concentrations of magnetite. Journal of Nanoparticle Research, 24(7), 150. https://doi.org/10.1007/s11051-022-05529-w

    Article  Google Scholar 

  24. Karimi, M., Eslami, M., Sahandi-Zangabad, P., Mirab, F., Farajisafiloo, N., Shafaei, Z., Ghosh, D., Bozorgomid, M., Dashkhaneh, F., & Hamblin, M. R. (2016). pH-sensitive stimulus-responsive nanocarriers for targeted delivery of therapeutic agents. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 8(5), 696–716. https://doi.org/10.1002/wnan.1389

    Article  Google Scholar 

  25. Wang, P.-J., Zhou, Di., Guo, H.-H., Liu, W.-F., Jin-Zhan, Su., Mao-Sen, Fu., Singh, C., Trukhanov, S., & Trukhanov, A. (2020). Ultrahigh enhancement rate of the energy density of flexible polymer nanocomposites using core–shell BaTiO 3@ MgO structures as the filler. Journal of Materials Chemistry A, 8(22), 11124–11132. https://doi.org/10.1039/d0ta03304a

    Article  Google Scholar 

  26. da Rosa Salles, T., et al. (2022). Magnetic nanocrystalline cellulose: Azithromycin adsorption and in vitro biological activity against melanoma cells. Journal of Polymers and the Environment, 30(7), 2695–2713. https://doi.org/10.1007/s10924-022-02388-3

    Article  Google Scholar 

  27. Yakovenko, O. S., Yu Matzui, L., Vovchenko, L. L., Oliynyk, V. V., Trukhanov, A. V., Trukhanov, S. V., Borovoy, M. O., et al. (2020). Effect of magnetic fillers and their orientation on the electrodynamic properties of BaFe 12–x Ga x O 19 (x= 0.1–1.2)—Epoxy composites with carbon nanotubes within GHz range. Applied Nanoscience, 10, 4747–4752. https://doi.org/10.1007/s13204-020-01477-w

    Article  Google Scholar 

  28. Sun, X., Liu, C., Omer, A. M., Yang, L.-Y., & Ouyang, X.-K. (2019). Dual-layered pH-sensitive alginate/chitosan/kappa-carrageenan microbeads for colon-targeted release of 5-fluorouracil. International Journal of Biological Macromolecules, 132, 487–494. https://doi.org/10.1016/j.ijbiomac.2019.03.225

    Article  Google Scholar 

  29. Bruckmann, F. D. S., et al. (2022). Influence of magnetite incorporation into chitosan on the adsorption of the methotrexate and in vitro cytotoxicity. Environmental Science and Pollution Research, 29(46), 70413–70434. https://doi.org/10.1007/s11356-022-20786-x

    Article  Google Scholar 

  30. Dubey, S. K., Bhatt, T., Agrawal, M., Saha, R. N., Saraf, S., Saraf, S., & Alexander, A. (2022). Application of chitosan modified nanocarriers in breast cancer. International Journal of Biological Macromolecules, 194, 521–538. https://doi.org/10.1016/j.ijbiomac.2021.11.095

    Article  Google Scholar 

  31. Pompeu, L. D., et al. (2023). Evaluation of cytotoxicity, reactive oxygen species and nitrous oxide of nanochitosan from shrimp shell. International Journal of Biological Macromolecules, 235, 123730. https://doi.org/10.1016/j.ijbiomac.2023.123730

    Article  Google Scholar 

  32. Dong, Y., Li, S., Li, X., & Wang, X. (2021). Smart MXene/agarose hydrogel with photothermal property for controlled drug release. International Journal of Biological Macromolecules, 190, 693–699. https://doi.org/10.1016/j.ijbiomac.2021.09.037

    Article  Google Scholar 

  33. Qi, X., Su, T., Tong, X., Xiong, W., Zeng, Q., Qian, Y., Zhou, Z., Wu, X., Li, Z., Shen, L., He, X., Xu, C., Chen, M., Li, Y., & Shen, J. (2019). Facile formation of salecan/agarose hydrogels with tunable structural properties for cell culture. Carbohydrate Polymers, 224, 11. https://doi.org/10.1016/j.carbpol.2019.115208

    Article  Google Scholar 

  34. Ninan, N., Forget, A., Shastri, V. P., Voelcker, N. H., & Blencowe, A. (2016). Antibacterial and anti-inflammatory pH-responsive tannic acid-carboxylated agarose composite hydrogels for wound healing. ACS Applied Materials & Interfaces, 8(42), 28511–28521. https://doi.org/10.1021/acsami.6b10491

    Article  Google Scholar 

  35. Yazdi, M. K., Taghizadeh, A., Taghizadeh, M., Stadler, F. J., Farokhi, M., Mottaghitalab, F., Zarrintaj, P., et al. (2020). Agarose-based biomaterials for advanced drug delivery. Journal of Controlled Release, 326, 523–543. https://doi.org/10.1016/j.jconrel.2020.07.028

    Article  Google Scholar 

  36. Park, J.-H., Shin, H.-J., Kim, M. H., Kim, J.-S., Kang, N., Lee, J.-Y., Kim, K.-T., Lee, J. I., & Kim, D.-D. (2016). Application of montmorillonite in bentonite as a pharmaceutical excipient in drug delivery systems. Journal of Pharmaceutical Investigation, 46, 363–375. https://doi.org/10.1007/s40005-016-0258-8

    Article  Google Scholar 

  37. Gârea, S. A., Voicu, A. I., & Iovu, H. (2017). Clay–polymer nanocomposites for controlled drug release. In Clay-polymer nanocomposites (pp. 475–509). Elsevier. https://doi.org/10.1016/B978-0-323-46153-5.00014-8

  38. Olad, A., Hagh, H. B. K., Mirmohseni, A., & Azhar, F. F. (2019). Graphene oxide and montmorillonite enriched natural polymeric scaffold for bone tissue engineering. Ceramics International, 45(12), 15609–15619. https://doi.org/10.1016/j.ceramint.2019.05.071

    Article  Google Scholar 

  39. Bozoğlan, B. K., Duman, O., & Tunç, S. (2020). Preparation and characterization of thermosensitive chitosan/carboxymethylcellulose/scleroglucan nanocomposite hydrogels. International Journal of Biological Macromolecules, 162, 781–797. https://doi.org/10.1016/j.ijbiomac.2020.06.087

    Article  Google Scholar 

  40. Rutakhli, A., Sabahi, H., & Riazi, G. H. (2019). Nanocomposite of montmorillonite/nettle extract: A potential ingredient for functional foods development. Journal of Functional Foods, 57, 166–172. https://doi.org/10.1016/j.jff.2019.04.004

    Article  Google Scholar 

  41. Sabzevari, A. G., Sabahi, H., & Nikbakht, M. (2020). Montmorillonite, a natural biocompatible nanosheet with intrinsic antitumor activity. Colloids and Surfaces B: Biointerfaces, 190, 110884. https://doi.org/10.1016/j.colsurfb.2020.110884

    Article  Google Scholar 

  42. Zhu, Y., Kong, G., Pan, Y., Liu, L., Yang, Bo., Zhang, S., Lai, D., & Che, C. (2022). An improved Hummers method to synthesize graphene oxide using much less concentrated sulfuric acid. Chinese Chemical Letters. https://doi.org/10.1016/j.cclet.2022.01.060

    Article  Google Scholar 

  43. Kumar, S. R., Priyatharshni, S., Babu, V. N., Mangalaraj, D., Viswanathan, C., Kannan, S., & Ponpandian, N. (2014). Quercetin conjugated superparamagnetic magnetite nanoparticles for in-vitro analysis of breast cancer cell lines for chemotherapy applications. Journal of Colloid and Interface Science, 436, 234–242. https://doi.org/10.1016/j.jcis.2014.08.064

    Article  Google Scholar 

  44. Jahanizadeh, S., Yazdian, F., Marjani, A., Omidi, M., & Rashedi, H. (2017). Curcumin-loaded chitosan/carboxymethyl starch/montmorillonite bio-nanocomposite for reduction of dental bacterial biofilm formation. International Journal of Biological Macromolecules, 105, 757–763. https://doi.org/10.1016/j.ijbiomac.2017.07.101

    Article  Google Scholar 

  45. Rezagholizade-shirvan, A., Najafi, M. F., Behmadi, H., & Masrournia, M. (2022). Preparation of nano-composites based on curcumin/chitosan-PVA-alginate to improve stability, antioxidant, antibacterial and anticancer activity of curcumin. Inorganic Chemistry Communications, 145, 110022. https://doi.org/10.1016/j.inoche.2022.110022

    Article  Google Scholar 

  46. Melo-Silveira, R. F., Fidelis, G. P., Costa, M. S. S. P., Telles, C. B. S., Dantas-Santos, N., de Oliveira, Elias S., Ribeiro, V. B., et al. (2011). In vitro antioxidant, anticoagulant and antimicrobial activity and in inhibition of cancer cell proliferation by xylan extracted from corn cobs. International Journal of Molecular Sciences, 13(1), 409–426. https://doi.org/10.3390/ijms13010409

    Article  Google Scholar 

  47. Gerami, S. E., Pourmadadi, M., Fatoorehchi, H., Yazdian, F., Rashedi, H., & Nigjeh, M. N. (2021). Preparation of pH-sensitive chitosan/polyvinylpyrrolidone/α-Fe2O3 nanocomposite for drug delivery application: Emphasis on ameliorating restrictions. International Journal of Biological Macromolecules, 173, 409–420. https://doi.org/10.1016/j.ijbiomac.2021.01.067

    Article  Google Scholar 

  48. Wolkers, W. F., Oliver, A. E., Tablin, F., & Crowe, J. H. (2004). A Fourier-transform infrared spectroscopy study of sugar glasses. Carbohydrate Research, 339(6), 1077–1085. https://doi.org/10.1016/j.carres.2004.01.016

    Article  Google Scholar 

  49. Silva, F. R. F., Dore, C. M. P. G., Marques, C. T., Nascimento, M. S., Benevides, N. M. B., Rocha, H. A. O., Chavante, S. F., & Leite, E. L. (2010). Anticoagulant activity, paw edema and pleurisy induced carrageenan: Action of major types of commercial carrageenans. Carbohydrate Polymers, 79(1), 26–33. https://doi.org/10.1016/j.carbpol.2009.07.010

    Article  Google Scholar 

  50. Queiroz, M. F., Melo, K. R. T., Sabry, D. A., Sassaki, G. L., & Rocha, H. A. O. (2014). Does the use of chitosan contribute to oxalate kidney stone formation? Marine Drugs, 13(1), 141–158. https://doi.org/10.3390/md13010141

    Article  Google Scholar 

  51. Han, D., Yan, L., Chen, W., & Li, W. (2011). Preparation of chitosan/graphene oxide composite film with enhanced mechanical strength in the wet state. Carbohydrate Polymers, 83(2), 653–658. https://doi.org/10.1016/j.carbpol.2010.08.038

    Article  Google Scholar 

  52. Zarei, Z., & Akhlaghinia, B. (2018). Cu(II) immobilized on Fe3O4@Agarose nanomagnetic catalyst functionalized with ethanolamine phosphate–salicylaldehyde schiff base: A magnetically reusable nanocatalyst for preparation of 2-substituted imidazolines, oxazolines, and thiazolines. Turkish Journal of Chemistry, 42, 170–191. https://doi.org/10.3906/kim-1704-53

    Article  Google Scholar 

  53. Song, J., Wang, X., & Chang, C-T. (2014). Preparation and characterization of graphene oxide. Journal of Nanomaterials, 2014. https://doi.org/10.1155/2014/276143

  54. Sun, X., Liu, Z., Welsher, K., Robinson, J. T., Goodwin, A., Zaric, S., & Dai, H. (2008). Nano-graphene oxide for cellular imaging and drug delivery. Nano Research, 1, 203–212. https://doi.org/10.1007/s12274-008-8021-8

    Article  Google Scholar 

  55. Li, X., Feng, J., Yaping, Du., Bai, J., Fan, H., Zhang, H., Peng, Y., & Li, F. (2015). One-pot synthesis of CoFe 2 O 4/graphene oxide hybrids and their conversion into FeCo/graphene hybrids for lightweight and highly efficient microwave absorber. Journal of Materials Chemistry A, 3(10), 5535–5546. https://doi.org/10.1039/c0xx00000x

    Article  Google Scholar 

  56. Sivashankari, P. R., & Prabaharan, M. (2020). Three-dimensional porous scaffolds based on agarose/chitosan/graphene oxide composite for tissue engineering. International Journal of Biological Macromolecules, 146, 222–231. https://doi.org/10.1016/j.ijbiomac.2019.12.219

    Article  Google Scholar 

  57. Shehap, A. M., Nasr, R. A., Mahfouz, M. A., & Ismail, A. M. (2021). Preparation and characterizations of high doping chitosan/MMT nanocomposites films for removing iron from ground water. Journal of Environmental Chemical Engineering, 9(1), 104700. https://doi.org/10.1016/j.jece.2020.104700

    Article  Google Scholar 

  58. Reddy, O. S., Subha, M. C. S., Jithendra, T., Madhavi, C., & Rao, K. C. (2021). Curcumin encapsulated dual cross linked sodium alginate/montmorillonite polymeric composite beads for controlled drug delivery. Journal of Pharmaceutical Analysis, 11(2), 191–199. https://doi.org/10.1016/j.jpha.2020.07.002

    Article  Google Scholar 

  59. Khodaei, A., Jahanmard, F., Hosseini, H. R. M., Bagheri, R., Dabbagh, A., Weinans, H., & Yavari, S. A. (2022). Controlled temperature-mediated curcumin release from magneto-thermal nanocarriers to kill bone tumors. Bioactive Materials, 11, 107–117. https://doi.org/10.1016/j.bioactmat.2021.09.028

    Article  Google Scholar 

  60. Pooresmaeil, M., Asl, E. A., & Namazi, H. (2021). A new pH-sensitive CS/Zn-MOF@ GO ternary hybrid compound as a biofriendly and implantable platform for prolonged 5- fluorouracil delivery to human breast cancer cells. Journal of Alloys and Compounds, 885, 160992. https://doi.org/10.1016/j.jallcom.2021.160992

    Article  Google Scholar 

  61. Shi, D., Karmakar, B., Osman, H.-E.H., El-kott, A. F., Morsy, K., & Abdel-Daim, M. M. (2022). Design and synthesis of chitosan/agar/Ag NPs: A potent and green bio-nanocomposite for the treatment of glucocorticoid induced osteoporosis in rats. Arabian Journal of Chemistry, 15(1), 103471. https://doi.org/10.1016/j.arabjc.2021.103471

    Article  Google Scholar 

  62. Sujiono, E. H., Zabrian, D., Dahlan, M. Y., Amin, B. D., & Agus, J. (2020). Graphene oxide based coconut shell waste: Synthesis by modified Hummers method and characterization. Heliyon, 6(8), e04568. https://doi.org/10.1016/j.heliyon.2020.e04568

    Article  Google Scholar 

  63. Prabha, G., & Raj, V. (2016). Preparation and characterization of chitosan - Polyethylene glycol-polyvinylpyrrolidone-coated superparamagnetic iron oxide nanoparticles as carrier system: Drug loading and in vitro drug release study. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 104, 808–816. https://doi.org/10.1002/jbm.b.33637

    Article  Google Scholar 

  64. Doost, A. S., Kassozi, V., Grootaert, C., Claeys, M., Dewettinck, K., Van Camp, J., & Van der Meeren, P. (2019). Self-assembly, functionality, and in-vitro properties of quercetin loaded nanoparticles based on shellac-almond gum biological macromolecules. International Journal of Biological Macromolecules, 129, 1024–1033. https://doi.org/10.1016/j.ijbiomac.2019.02.071

    Article  Google Scholar 

  65. Joseph, E., & Singhvi, G. (2019). Multifunctional nanocrystals for cancer therapy: A potential nanocarrier. Nanomaterials for Drug Delivery and Therapy, 91–116. https://doi.org/10.1016/B978-0-12-816505-8.00007-2

  66. Wang, H., Gong, X., Guo, X., Liu, C., Fan, Y.-Y., Zhang, J., Niu, B., & Li, W. (2019). Characterization, release, and antioxidant activity of curcumin-loaded sodium alginate/ZnO hydrogel beads. International Journal of Biological Macromolecules, 121, 1118–1125. https://doi.org/10.1016/j.ijbiomac.2018.10.121

    Article  Google Scholar 

  67. Sampath, M., Pichaimani, A., Kumpati, P., & Sengottuvelan, B. (2020). The remarkable role of emulsifier and chitosan, dextran and PEG as capping agents in the enhanced delivery of curcumin by nanoparticles in breast cancer cells. International Journal of Biological Macromolecules, 162, 748–761. https://doi.org/10.1016/j.ijbiomac.2020.06.188

    Article  Google Scholar 

  68. Elbialy, N. S., Aboushoushah, S. F., & Mohamed, N. (2022). Bioinspired synthesis of protein/polysaccharide-decorated folate as a nanocarrier of curcumin to potentiate cancer therapy. International Journal of Pharmaceutics, 613, 121420. https://doi.org/10.1016/j.ijpharm.2021.121420

    Article  Google Scholar 

  69. Abdel-Hakeem, M. A., Mongy, S., Hassan, B., Tantawi, O. I., & Badawy, I. (2021). Curcumin loaded chitosan-protamine nanoparticles revealed antitumor activity via suppression of NF-κB, proinflammatory cytokines and Bcl-2 gene expression in the breast cancer cells. Journal of Pharmaceutical Sciences, 110(9), 3298–3305. https://doi.org/10.1016/j.xphs.2021.06.004

    Article  Google Scholar 

  70. HeydariForoushani, P., Rahmani, E., Alemzadeh, I., Vossoughi, M., Pourmadadi, M., Rahdar, A., & Díez-Pascual, A. M. (2022). Curcumin sustained release with a hybrid chitosan-silk fibroin nanofiber containing silver nanoparticles as a novel highly efficient antibacterial wound dressing. Nanomaterials, 12(19), 3426. https://doi.org/10.3390/nano12193426

    Article  Google Scholar 

  71. Pourmadadi, M., Ahmadi, M., & Yazdian, F. (2023). Synthesis of a novel pH-responsive Fe3O4/chitosan/agarose double nanoemulsion as a promising nanocarrier with sustained release of curcumin to treat MCF-7 cell line. International Journal of Biological Macromolecules, 235, 123786. https://doi.org/10.1016/j.ijbiomac.2023.123786

    Article  Google Scholar 

  72. Razi, M. A., Wakabayashi, R., Tahara, Y., Goto, M., & Kamiya, N. (2018). Genipin-stabilized caseinate-chitosan nanoparticles for enhanced stability and anti-cancer activity of curcumin”. Colloids and Surfaces B: Biointerfaces, 164, 308–315. https://doi.org/10.1016/j.colsurfb.2018.01.041

    Article  Google Scholar 

  73. Karami, M. H., Pourmadadi, M., Abdouss, M., Kalaee, M. R., Moradi, O., Rahdar, A., & Díez-Pascual, A. M. (2023). Novel chitosan/γ-alumina/carbon quantum dot hydrogel nanocarrier for targeted drug delivery. International Journal of Biological Macromolecules, 251, 126280. https://doi.org/10.1016/j.ijbiomac.2023.126280

    Article  Google Scholar 

  74. Jafari, H., & Namazi, H. (2023). pH-sensitive biosystem based on laponite RD/chitosan/polyvinyl alcohol hydrogels for controlled delivery of curcumin to breast cancer cells. Colloids and Surfaces B: Biointerfaces, 231, 113585. https://doi.org/10.1016/j.colsurfb.2023.113585

    Article  Google Scholar 

  75. Haseli, S., Pourmadadi, M., Samadi, A., Yazdian, F., Abdouss, M., Rashedi, H., & Navaei-Nigjeh, M. (2022). A novel pH-responsive nanoniosomal emulsion for sustained release of curcumin from a chitosan-based nanocarrier: Emphasis on the concurrent improvement of loading, sustained release, and apoptosis induction. Biotechnology Progress, 38(5), e3280. https://doi.org/10.1002/btpr.3280

    Article  Google Scholar 

Download references

Funding

This work was supported by the Iran National Science Foundation (INSF).

Author information

Authors and Affiliations

Authors

Contributions

M.R.: data curation, formal analysis, methodology, investigation, visualization, writing-original draft preparation. M.P.: data curation, conceptualization, investigation, visualization, writing-original draft preparation, writing—reviewing and editing. H.R.: visualization, conceptualization, validation, resources, supervision, writing—reviewing and editing. F.Y.: visualization, validation, resources, writing—reviewing and editing. M.N-N.: visualization, validation, writing—reviewing and editing. A.R.: visualization, validation, resources, supervision, writing—reviewing and editing. L.F.R.F.: visualization, validation, writing—reviewing and editing.

Corresponding authors

Correspondence to Hamid Rashedi, Fatemeh Yazdian, Abbas Rahdar or Luiz Fernando Romanholo Ferreira.

Ethics declarations

Ethical Approval

None.

Consent to Participate

All authors have given their consent to participate in the study.

Consent for Publication

All authors have given their consent for publication.

Competing Interests

The authors declare no competing interests.

Research Involving Humans and Animals

In our Research, no tests involving Animals or Humans were conducted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Chitosan-based nanomaterials enhance cancer therapy.

• Drug delivery system: chitosan, graphene oxide, agarose, and montmorillonite nanoparticles.

• NC encapsulation with CUR improves breast cancer treatment.

• Results confirm cytotoxicity, pH sensitivity, and sustained drug release against MCF7 cells.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajaei, M., Pourmadadi, M., Rashedi, H. et al. Improving Curcumin Constraints with pH-Responsive Chitosan Based Graphene Oxide/Montmorillonite Nanohybrid Modified Agarose in Breast Cancer Therapy. BioNanoSci. (2024). https://doi.org/10.1007/s12668-024-01385-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12668-024-01385-1

Keywords

Navigation