Skip to main content

Advertisement

Log in

Unveiling the Biological Potential of Mycosynthesized Selenium Nanoparticles from Endophytic Fungus Curvularia sp. LCJ413

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Selenium nanoparticles (SeNPs) have recently received interest in several biological applications due to their unique role in preventing cellular damage and other serious human diseases. In this study, SeNPs were synthesized using the cell-free extract of the endophytic fungus Curvularia sp. LCJ413 with sodium selenite as the precursor. The mycosynthesized SeNPs were characterized using UV-visible spectrophotometer, Fourier-transform infrared spectroscopy, dynamic light scattering, zeta potential, X-ray diffraction, Scanning electron microscopy, and energy dispersive X-ray analysis. The synthesized SeNPs exhibited a crystalline structure with a predominant rod-like shape, alongside some irregular shapes with an average size of 25–100 nm. The synthesized SeNPs were evaluated for biological activities such as antimicrobial, antioxidant, and anti-inflammatory. The results showed that SeNPs effectively inhibited Staphylococcus aureus growth (19 ± 0.47 mm zone of inhibition) and dose-dependently reduced 2,2-diphenyl-1-picryl-hydrazine-hydrate and hydrogen peroxide radicals, with the highest inhibition percentages of 90.66 ± 3% and 80.16 ± 2.9% at 50 µg/mL respectively. SeNPs demonstrated potential anti-inflammatory activity at 50 µg/mL, with 80.55 ± 2.7% inhibition for bovine serum albumin denaturation and 76.01 ± 3.1% inhibition for egg albumin denaturation assays. Less toxicity of the SeNPs was demonstrated using brine shrimp lethality assay and zebrafish embryonic development, which makes them an ideal candidate for nanomedicine formulations. To the best of our knowledge, this is the first study on the fabrication of SeNPs from the endophytic fungus Curvularia sp. LCJ413 for biological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

Data is available on request from the authors.

References

  1. Nirmala, C., Sridevi, M., Aishwarya, A., Perara, R., & Sathiyanarayanan, Y. (2023). Pharmacological prospects of morin conjugated selenium nanoparticles-evaluation of antimicrobial, antioxidant, thrombolytic, and anticancer activities. Bionanoscience, 1–14. https://doi.org/10.1007/s12668-023-01116-y.

  2. Jayachandran, A., Aswathy, T. R., & Nair, A. S. (2021). Green synthesis and characterization of zinc oxide nanoparticles using Cayratia pedata leaf extract. Biochem Biophys Rep, 26, 100995. https://doi.org/10.1016/j.bbrep.2021.100995.

    Article  Google Scholar 

  3. Muniyappan, N., Pandeeswaran, M., & Amalraj, A. (2021). Green synthesis of gold nanoparticles using Curcuma pseudomontana isolated curcumin: Its characterization, antimicrobial, antioxidant and anti-inflammatory activities. Environ Chem Ecotoxicol, 3, 117–124. https://doi.org/10.1016/j.enceco.2021.01.002.

    Article  Google Scholar 

  4. Barabadi, H., Mojab, F., Vahidi, H., Marashi, B., Talank, N., Hosseini, O., & Saravanan, M. (2021). Green synthesis, characterization, antibacterial and biofilm inhibitory activity of silver nanoparticles compared to commercial silver nanoparticles. Inorganic Chemistry Communications, 129, 108647. https://doi.org/10.1016/j.inoche.2021.108647.

    Article  Google Scholar 

  5. Virmani, I., Sasi, C., Priyadarshini, E., Kumar, R., Sharma, S. K., Singh, G. P., & Meena, R. (2020). Comparative anticancer potential of biologically and chemically synthesized gold nanoparticles. J Clust Sci, 31, 867–876. https://doi.org/10.1007/s10876-019-01695-5.

    Article  Google Scholar 

  6. Vu, T. T., Nguyen, P. T. M., Pham, N. H., Le, T. H., Nguyen, T. H., Do, D. T., & La, D. D. (2022). Green synthesis of selenium nanoparticles using Cleistocalyx operculatus leaf extract and their acute oral toxicity study. J Compos Sci, 6(10), 307. https://doi.org/10.3390/jcs6100307.

    Article  Google Scholar 

  7. Fardsadegh, B., & Jafarizadeh-Malmiri, H. (2019). Aloe vera leaf extract mediated green synthesis of selenium nanoparticles and assessment of their in vitro antimicrobial activity against spoilage fungi and pathogenic bacteria strains. Green Process Synth, 8(1), 399–407. https://doi.org/10.1515/gps-2019-0007.

    Article  Google Scholar 

  8. Barabadi, H., Webster, T. J., Vahidi, H., Sabori, H., Kamali, K. D., Shoushtari, F. J., & Saravana, M. (2020). Green nanotechnology-based gold nanomaterials for hepatic cancer therapeutics: A systematic review. Iran J Pharm Res, 19(3), 3–17. https://doi.org/10.22037/ijpr.2020.113820.14504.

    Article  Google Scholar 

  9. Honary, S., Barabadi, H., Ebrahimi, P., Naghibi, F., & Alizadeh, A. (2015). Development and optimization of biometal nanoparticles by using mathematical methodology: A microbial approach. Journal of Nano Research, 30, 106–115. https://doi.org/10.4028/www.scientific.net/JNanoR.30.106.

    Article  Google Scholar 

  10. Khurana, A., Tekula, S., Saifi, M. A., Venkatesh, P., & Godugu, C. (2019). Therapeutic applications of selenium nanoparticles. Biomedicine & Pharmacotherapy, 111, 802–812. https://doi.org/10.1016/j.biopha.2018.12.146.

    Article  Google Scholar 

  11. Bisht, N., Phalswal, P., & Khanna, P. K. (2022). Selenium nanoparticles: A review on synthesis and biomedical applications. Mat Adv, 3(3), 1415–1431. https://doi.org/10.1039/D1MA00639H.

    Article  Google Scholar 

  12. Nayak, V., Singh, K. R., Singh, A. K., & Singh, R. P. (2021). Potentialities of selenium nanoparticles in biomedical science. New Journal of Chemistry, 45(6), 2849–2878. https://doi.org/10.1039/D0NJ05884J.

    Article  Google Scholar 

  13. Wadhwani, S. A., Shedbalkar, U. U., Singh, R., & Chopade, B. A. (2016). Biogenic selenium nanoparticles: Current status and future prospects. Applied Microbiology and Biotechnology, 100, 2555–2566. https://doi.org/10.1007/s00253-016-7300-7.

    Article  Google Scholar 

  14. Ferro, C., Florindo, H. F., & Santos, H. A. (2021). Selenium nanoparticles for biomedical applications: From development and characterization to therapeutics. Adv Healthc Mater, 10(16), 2100598. https://doi.org/10.1002/adhm.202100598.

    Article  Google Scholar 

  15. Meenambigai, K., Kokila, R., Chandhirasekar, K., Thendralmanikandan, A., Kaliannan, D., Ibrahim, K. S., & Nareshkumar, A. (2022). Green synthesis of selenium nanoparticles mediated by Nilgirianthus ciliates leaf extracts for antimicrobial activity on foodborne pathogenic microbes and pesticidal activity against Aedes aegypti with molecular docking. Biological Trace Element Research, 200(6), 2948–2962. https://doi.org/10.1007/s12011-021-02868-y.

    Article  Google Scholar 

  16. Varlamova, E. G., Turovsky, E. A., & Blinova, E. V. (2021). Therapeutic potential and main methods of obtaining selenium nanoparticles. International Journal of Molecular Sciences, 22(19), 10808. https://doi.org/10.3390/ijms221910808.

    Article  Google Scholar 

  17. Tran, P. A., & Webster, T. J. (2011). Selenium nanoparticles inhibit Staphylococcus aureus growth. Int J Nanomedicine, 6, 1553–1558. https://doi.org/10.2147/IJN.S21729.

    Article  Google Scholar 

  18. Pandiyan, I., Sri, S. D., Indiran, M. A., Rathinavelu, P. K., Prabakar, J., & Rajeshkumar, S. (2022). Antioxidant, anti-inflammatory activity of Thymus vulgaris-mediated selenium nanoparticles: An in vitro study. J Conserv Dent, 25(3), 241–245. https://doi.org/10.4103/JCD.JCD_369_21.

    Article  Google Scholar 

  19. Menon, S., Shrudhi Devi, K. S., Santhiya, R., Rajeshkumar, S., & Kumar, V. (2018). Selenium nanoparticles: A potent chemotherapeutic agent and an elucidation of its mechanism. Colloids and Surfaces. B, Biointerfaces, 170, 280–292. https://doi.org/10.1016/j.colsurfb.2018.06.006.

    Article  Google Scholar 

  20. Jha, N., Esakkiraj, P., Annamalai, A., Lakra, A. K., Naik, S., & Arul, V. (2022). Synthesis, optimization, and physicochemical characterization of selenium nanoparticles from polysaccharide of mangrove Rhizophora mucronata with potential bioactivities. J Trace Elem Miner, 2, 100019. https://doi.org/10.1016/j.jtemin.2022.100019.

    Article  Google Scholar 

  21. Sumithra, D., Bharathi, S., Kaviyarasan, P., & Suresh, G. (2023). Biofabrication of selenium nanoparticles using marine Streptomyces sp. and assessment of its antibacterial, antibiofilm, antioxidant, and in vivo cytotoxic potential. Geomicrobiology Journal, 40(5), 485–492. https://doi.org/10.1080/01490451.2023.2196280.

    Article  Google Scholar 

  22. Chadramohan, S., Sundar, K., & Muthukumaran, A. (2018). Monodispersed spherical shaped selenium nanoparticles (SeNPs) synthesized by Bacillus subtilis and its toxicity evaluation in zebrafish embryos. Mater Res Express, 5(2), 025020. https://doi.org/10.1088/2053-1591/aaabeb.

    Article  Google Scholar 

  23. Chandramohan, S., Sundar, K., & Muthukumaran, A. (2019). Hollow selenium nanoparticles from potato extract and investigation of its biological properties and developmental toxicity in zebrafish embryos. Iet Nanobiotechnology, 13(3), 275–281. https://doi.org/10.1049/iet-nbt.2018.5228.

    Article  Google Scholar 

  24. Abdel-Moneim, A. M., El-Saadony, M. T., Shehata, A. M., Saad, A. M., Aldhumri, S. A., Ouda, S. M., & Mesalam, N. M. (2022). Antioxidant and antimicrobial activities of Spirulina platensis extracts and biogenic selenium nanoparticles against selected pathogenic bacteria and fungi. Saudi J Biol Sci, 29(2), 1197–1209. https://doi.org/10.1016/j.sjbs.2021.09.046.

    Article  Google Scholar 

  25. Ameri, A., Shakibaie, M., Ameri, A., Faramarzi, M. A., Amir-Heidari, B., & Forootanfar, H. (2016). Photocatalytic decolorization of bromothymol blue using biogenic selenium nanoparticles synthesized by terrestrial actinomycete Streptomyces griseobrunneus strain FSHH12. Desalin Water Treat, 57(45), 21552–21563. https://doi.org/10.1080/19443994.2015.1124349.

    Article  Google Scholar 

  26. Alam, H., Khatoon, N., Khan, M. A., Husain, S. A., Saravanan, M., & Sardar, M. (2020). Synthesis of selenium nanoparticles using probiotic bacteria lactobacillus acidophilus and their enhanced antimicrobial activity against resistant bacteria. J Clust Sci, 31, 1003–1011. https://doi.org/10.1007/s10876-019-01705-6.

    Article  Google Scholar 

  27. Zare, B., Babaie, S., Setayesh, N., & Shahverdi, A. R. (2013). Isolation and characterization of a fungus for extracellular synthesis of small selenium nanoparticles. Nanomed J, 1(1), 13–19.

    Google Scholar 

  28. Akcay, F. A., & Avci, A. (2020). Effects of process conditions and yeast extract on the synthesis of selenium nanoparticles by a novel indigenous isolate Bacillus sp. EKT1 and characterization of nanoparticles. Archives of Microbiology, 202(8), 2233–2243. https://doi.org/10.1007/s00203-020-01942-8.

    Article  Google Scholar 

  29. Ranjitha, V. R., & Rai, V. R. (2021). Selenium nanostructure: Progress towards green synthesis and functionalization for biomedicine. J Pharm Investig, 51, 117–135. https://doi.org/10.1007/s40005-020-00510-y.

    Article  Google Scholar 

  30. Sarkar, J., Dey, P., Saha, S., & Acharya, K. (2011). Mycosynthesis of selenium nanoparticles. Micro Nano Lett, 6(8), 599–602. https://doi.org/10.1049/mnl.2011.0227.

    Article  Google Scholar 

  31. Srivastava, N., & Mukhopadhyay, M. (2015). Biosynthesis and structural characterization of selenium nanoparticles using Gliocladium Roseum. J Clust Sci, 26, 1473–1482. https://doi.org/10.1007/s10876-014-0833-y.

    Article  Google Scholar 

  32. Zhang, H., Zhou, H., Bai, J., Li, Y., Yang, J., Ma, Q., & Qu, Y. (2019). Biosynthesis of selenium nanoparticles mediated by fungus Mariannaea sp. HJ and their characterization. Colloid Surf A Physicochem Eng Asp, 571, 9–16. https://doi.org/10.1016/j.colsurfa.2019.02.070.

    Article  Google Scholar 

  33. Diko, C. S., Zhang, H., Lian, S., Fan, S., Li, Z., & Qu, Y. (2020). Optimal synthesis conditions and characterization of selenium nanoparticles in Trichoderma sp. WL-Go culture broth. Materials Chemistry and Physics, 246, 122583. https://doi.org/10.1016/j.matchemphys.2019.122583.

    Article  Google Scholar 

  34. Amin, M. A., Ismail, M. A., Badawy, A. A., Awad, M. A., Hamza, M. F., Awad, M. F., & Fouda, A. (2021). The potency of fungal-fabricated selenium nanoparticles to improve the growth performance of Helianthus annuus L. and control of cutworm Agrotis ipsilon. Catalysts, 11(12), 1551. https://doi.org/10.3390/catal11121551.

    Article  Google Scholar 

  35. Saied, E., Mekky, A. E., Al-Askar, A. A., Hagag, A. F., El-bana, A. A., Ashraf, M., & Hashem, A. H. (2023). Aspergillus terreus-mediated selenium nanoparticles and their antimicrobial and photocatalytic activities. Crystals, 13(3), 450. https://doi.org/10.3390/cryst13030450.

    Article  Google Scholar 

  36. Meena, M., Zehra, A., Swapnil, P., Harish Marwal, A., Yadav, G., & Sonigra, P. (2021). Endophytic nanotechnology: An approach to study scope and potential applications. Frontiers in Chemistry, 9, 613343. https://doi.org/10.3389/fchem.2021.613343.

    Article  Google Scholar 

  37. Mathur, P., Saini, S., Paul, E., Sharma, C., & Mehtani, P. (2021). Endophytic fungi mediated synthesis of iron nanoparticles: Characterization and application in methylene blue decolorization. Curr Res Green Sustain Chem, 4, 100053. https://doi.org/10.1016/j.crgsc.2020.100053.

    Article  Google Scholar 

  38. Hu, X., Saravanakumar, K., Jin, T., & Wang, M. H. (2019). Mycosynthesis, characterization, anticancer and antibacterial activity of silver nanoparticles from endophytic fungus Talaromyces Purpureogenus. Int J Nanomedicine, 14, 3427. https://doi.org/10.2147/IJN.S200817.

    Article  Google Scholar 

  39. Munawer, U., Raghavendra, V. B., Ningaraju, S., Krishna, K. L., Ghosh, A. R., Melappa, G., & Pugazhendhi, A. (2020). Biofabrication of gold nanoparticles mediated by the endophytic Cladosporium species: Photodegradation, in vitro anticancer activity and in vivo antitumor studies. International Journal of Pharmaceutics, 588, 119729. https://doi.org/10.1016/j.ijpharm.2020.119729.

    Article  Google Scholar 

  40. Vijayanandan, A. S., & Balakrishnan, R. M. (2018). Biosynthesis of cobalt oxide nanoparticles using endophytic fungus aspergillus nidulans. Journal of Environmental Management, 218, 442–450. https://doi.org/10.1016/j.jenvman.2018.04.032.

    Article  Google Scholar 

  41. Abdelkader, D. H., Negm, W. A., Elekhnawy, E., Eliwa, D., Aldosari, B. N., & Almurshedi, A. S. (2022). Zinc oxide nanoparticles as potential delivery carrier: Green synthesis by Aspergillus Niger endophytic fungus, characterization, and in vitro/in vivo antibacterial activity. Pharmaceuticals, 15(9), 1057. https://doi.org/10.3390/ph15091057.

    Article  Google Scholar 

  42. Mani, V. M., Kalaivani, S., Sabarathinam, S., Vasuki, M., Soundari, A. J. P. G., Das, M. A., & Pugazhendhi, A. (2021). Copper oxide nanoparticles synthesized from an endophytic fungus aspergillus terreus: Bioactivity and anti-cancer evaluations. Environmental Research, 201, 111502. https://doi.org/10.1016/j.envres.2021.111502.

    Article  Google Scholar 

  43. Fouda, A., Hassan, S. E. D., Eid, A. M., Abdel-Rahman, M. A., & Hamza, M. F. (2022). Light enhanced the antimicrobial, anticancer, and catalytic activities of selenium nanoparticles fabricated by endophytic fungal strain, Penicillium Crustosum EP-1. Scientific Reports, 12(1), 11834. https://doi.org/10.1038/s41598-022-15903-2.

    Article  Google Scholar 

  44. Hussein, H. G., El-Sayed, E. S. R., Younis, N. A., Hamdy, A. E. H. A., & Easa, S. M. (2022). Harnessing endophytic fungi for biosynthesis of selenium nanoparticles and exploring their bioactivities. AMB Express, 12(1), 1–16. https://doi.org/10.1186/s13568-022-01408-8.

    Article  Google Scholar 

  45. Nassar, A. R. A., Eid, A. M., Atta, H. M., El Naghy, W. S., & Fouda, A. (2023). Exploring the antimicrobial, antioxidant, anticancer, biocompatibility, and larvicidal activities of selenium nanoparticles fabricated by endophytic fungal strain Penicillium Verhagenii. Scientific Reports, 13(1), 9054. https://doi.org/10.1038/s41598-023-35360-9.

    Article  Google Scholar 

  46. Kathiravan, A., & Gnanadoss, J. J. (2022). Screening and characterization of L-Asparaginase producing endophytic fungi associated with certain medicinal plants of Lamiaceae. Res J Biotechnol, 17(11), 51–62. https://doi.org/10.25303/1711rjbt51062.

    Article  Google Scholar 

  47. Bafghi, M. H., Darroudi, M., Zargar, M., Zarrinfar, H., & Nazari, R. (2021). Biosynthesis of selenium nanoparticles by aspergillus flavus and Candida albicans for antifungal applications. Micro Nano Lett, 16(14), 656–669. https://doi.org/10.1049/mna2.12096.

    Article  Google Scholar 

  48. Soltanian, S., Sheikhbahaei, M., Mohamadi, N., Pabarja, A., Abadi, M. F. S., & Tahroudi, M. H. M. (2021). Biosynthesis of zinc oxide nanoparticles using Hertia Intermedia and evaluation of its cytotoxic and antimicrobial activities. Bionanoscience, 11, 245–255. https://doi.org/10.1007/s12668-020-00816-z.

    Article  Google Scholar 

  49. Saad, P. G., Castelino, R. D., Ravi, V., Al-Amri, I. S., & Khan, S. A. (2021). Green synthesis of silver nanoparticles using Omani pomegranate peel extract and two polyphenolic natural products: Characterization and comparison of their antioxidant, antibacterial, and cytotoxic activities. Beni-Suef Univ J Basic Appl Sci, 10, 1–10. https://doi.org/10.1186/s43088-021-00119-6.

    Article  Google Scholar 

  50. Uzma, M., Prasad, D., Sunayana, N., Vinay, R., & Shilpashree, H. (2022). Studies of in vitro antioxidant and anti-inflammatory activities of gold nanoparticles biosynthesised from a medicinal plant, Commiphora Wightii. Materials Technology, 37(9), 915–925. https://doi.org/10.1080/10667857.2021.1905206.

    Article  Google Scholar 

  51. Lava, M. B., Muddapur, U. M., Basavegowda, N., More, S. S., & More, V. S. (2021). Characterization, anticancer, antibacterial, anti-diabetic and anti-inflammatory activities of green synthesized silver nanoparticles using Justica wynaadensis leaves extract. Mater Today Proc, 46, 5942–5947. https://doi.org/10.1016/j.matpr.2020.10.048.

    Article  Google Scholar 

  52. Naveed, M., Batool, H., Rehman, S. U., Javed, A., Makhdoom, S. I., Aziz, T., & Alhomrani, M. (2022). Characterization and evaluation of the antioxidant, antidiabetic, anti-inflammatory, and cytotoxic activities of silver nanoparticles synthesized using Brachychiton populneus leaf extract. Processes, 10(8), 1521. https://doi.org/10.3390/pr10081521.

    Article  Google Scholar 

  53. Jayalakshmi, S., Narendran, K., Sukumar, E., Irshad Ahamed, J., Nivedhitha, M. S., & Rajesh Kumar, S. (2021). Molecular docking studies, in vitro-brine shrimp lethal assay and antibacterial assessment of embelin, vilangin and phenyl vilangin against endodontic pathogen, Enterococcus faecalis. Research on Chemical Intermediates, 47(11), 4855–4878. https://doi.org/10.1007/s11164-021-04559-8.

    Article  Google Scholar 

  54. OECD. (2013). Test No. 236: Fish Embryo Acute Toxicity (FET) Test, OECD guidelines for the testing of chemicals, Sect. 2. OECD Publishing. https://doi.org/10.1787/9789264203709-en.

  55. Abbas, H., & Abou Baker, D. (2020). Biological evaluation of selenium nanoparticles biosynthesized by Fusarium Semitectum as antimicrobial and anticancer agents. Egyptian Journal of Chemistry, 63(4), 1119–1133. https://doi.org/10.21608/ejchem.2019.15618.1945.

    Article  Google Scholar 

  56. Salem, S. S., Fouda, M. M., Fouda, A., Awad, M. A., Al-Olayan, E. M., Allam, A. A., & Shaheen, T. I. (2021). Antibacterial, cytotoxicity and larvicidal activity of green synthesized selenium nanoparticles using Penicillium corylophilum. J Clust Sci, 32, 351–361. https://doi.org/10.1007/s10876-020-01794-8.

    Article  Google Scholar 

  57. Kannan, N., & Subbalaxmi, S. (2011). Green synthesis of silver nanoparticles using Bacillus subtillus IA751 and its antimicrobial activity. Res J Nanosci Nanotechnol, 1(2), 87–94. https://doi.org/10.3923/rjnn.2011.87.94.

    Article  Google Scholar 

  58. El-Saadony, M. T., Saad, A. M., Taha, T. F., Najjar, A. A., Zabermawi, N. M., Nader, M. M., AbuQamar, S. F., El-Tarabily, K. A., & Salama, A. (2021). Selenium nanoparticles from Lactobacillus paracasei HM1 capable of antagonizing animal pathogenic fungi as a new source from human breast milk. Saudi J Biol Sci, 28(12), 6782–6794. https://doi.org/10.1016/j.sjbs.2021.07.059.

    Article  Google Scholar 

  59. Anu, K., Devanesan, S., Prasanth, R., AlSalhi, M. S., Ajithkumar, S., & Singaravelu, G. (2020). Biogenesis of selenium nanoparticles and their anti-leukemia activity. J King Saud Univ Sci, 32(4), 2520–2526. https://doi.org/10.1016/j.jksus.2020.04.018.

    Article  Google Scholar 

  60. Joshi, S. M., De Britto, S., Jogaiah, S., & Ito, S. I. (2019). Mycogenic selenium nanoparticles as potential new generation broad spectrum antifungal molecules. Biomolecules, 9(9), 419. https://doi.org/10.3390/biom9090419.

    Article  Google Scholar 

  61. Cittrarasu, V., Kaliannan, D., Dharman, K., Maluventhen, V., Easwaran, M., Liu, W. C., & Arumugam, M. (2021). Green synthesis of selenium nanoparticles mediated from Ceropegia bulbosa Roxb extract and its cytotoxicity, antimicrobial, mosquitocidal and photocatalytic activities. Scientific Rep, 11(1), 1032. https://doi.org/10.1038/s41598-020-80327-9.

    Article  Google Scholar 

  62. Islam, S. N., Naqvi, S. M. A., Raza, A., Jaiswal, A., Singh, A. K., Dixit, M., & Ahmad, A. (2022). Mycosynthesis of highly fluorescent selenium nanoparticles from Fusarium oxysporum, their antifungal activity against black fungus aspergillus Niger, and in-vivo biodistribution studies. 3 Biotech, 12(11), 309. https://doi.org/10.1007/s13205-022-03383-0.

    Article  Google Scholar 

  63. Hashem, A. H., Khalil, A. M. A., Reyad, A. M., & Salem, S. S. (2021). Biomedical applications of mycosynthesized selenium nanoparticles using Penicillium Expansum ATTC 36200. Biological Trace Element Research, 199, 3998–4008. https://doi.org/10.1007/s12011-020-02506-z.

    Article  Google Scholar 

  64. Ashengroph, M., & Tozandehjani, S. (2022). Optimized resting cell method for green synthesis of selenium nanoparticles from a new Rhodotorula mucilaginosa strain. Process Biochemistry, 116, 197–205. https://doi.org/10.1016/j.procbio.2022.03.014.

    Article  Google Scholar 

  65. Al-Hagar, O. E., Abol-Fotouh, D., Abdelkhalek, E. S., Elsoud, M. M. A., & Sidkey, N. M. (2021). Bacillus niabensis OAB2: Outstanding bio-factory of selenium nanoparticles. Materials Chemistry and Physics, 273, 125147. https://doi.org/10.1016/j.matchemphys.2021.125147.

    Article  Google Scholar 

  66. Mollania, N., Tayebee, R., & Narenji-Sani, F. (2016). An environmentally benign method for the biosynthesis of stable selenium nanoparticles. Research on Chemical Intermediates, 42, 4253–4271. https://doi.org/10.1007/s11164-015-2272-2.

    Article  Google Scholar 

  67. Arunthirumeni, M., Veerammal, V., & Shivakumar, M. S. (2022). Biocontrol efficacy of mycosynthesized selenium nanoparticle using Trichoderma sp. on insect pest Spodoptera litura. J Clust Sci, 33(4), 1645–1653. https://doi.org/10.1007/s10876-021-02095-4.

    Article  Google Scholar 

  68. Mosallam, F. M., El-Sayyad, G. S., Fathy, R. M., & El-Batal, A. I. (2018). Biomolecules-mediated synthesis of selenium nanoparticles using aspergillus oryzae fermented lupin extract and gamma radiation for hindering the growth of some multidrug-resistant bacteria and pathogenic fungi. Microbial Pathogenesis, 122, 108–116. https://doi.org/10.1016/j.micpath.2018.06.013.

    Article  Google Scholar 

  69. Morad, M. Y., El-Sayed, H., Elhenawy, A. A., Korany, S. M., Aloufi, A. S., & Ibrahim, A. M. (2022). Myco-synthesized molluscicidal and larvicidal selenium nanoparticles: A new strategy to control Biomphalaria alexandrina snails and larvae of Schistosoma mansoni with an in silico study on induced oxidative stress. J Fungi, 8(3), 262. https://doi.org/10.3390/jof8030262.

    Article  Google Scholar 

  70. Jayappa, M. D., Ramaiah, C. K., Kumar, M. A. P., Suresh, D., Prabhu, A., Devasya, R. P., & Sheikh, S. (2020). Green synthesis of zinc oxide nanoparticles from the leaf, stem and in vitro grown callus of Mussaenda Frondosa L.: Characterization and their applications. Appl Nanosci, 10, 3057–3074. https://doi.org/10.3390/jof8030262.

    Article  Google Scholar 

  71. Komal, R., Uzair, B., Sajjad, S., Butt, S., Kanwal, A., Ahmed, I., & Abbas, S. (2020). Skirmishing MDR strain of Candida albicans by effective antifungal CeO2 nanostructures using aspergillus terreus and Talaromyces Purpurogenus. Mater Res Express, 7(5), 055004. https://doi.org/10.1088/2053-1591/ab8ba2.

    Article  Google Scholar 

  72. Safaei, M., Mozaffari, H. R., Moradpoor, H., Imani, M. M., Sharifi, R., & Golshah, A. (2022). Optimization of green synthesis of selenium nanoparticles and evaluation of their antifungal activity against oral Candida albicans Infection. Advances in Materials Science and Engineering, 2022, 1–8. https://doi.org/10.1155/2022/1376998.

    Article  Google Scholar 

  73. Vahidi, H., Kobarfard, F., Kosar, Z., Mahjoub, M. A., Saravanan, M., & Barabadi, H. (2020). Mycosynthesis and characterization of selenium nanoparticles using standard Penicillium Chrysogenum PTC 5031 and their antibacterial activity؛ A novel approach in microbial nanotechnology. Future Med Educ J, 7(4), 315–323. https://doi.org/10.22038/nmj.2020.07.00008.

    Article  Google Scholar 

  74. Rajagopal, G., Nivetha, A., Ilango, S., Muthudevi, G. P., Prabha, I., & Arthimanju, R. (2021). Phytofabrication of selenium nanoparticles using Azolla pinnata: Evaluation of catalytic properties in oxidation, antioxidant and antimicrobial activities. J Environ Chem Eng, 9(4), 105483. https://doi.org/10.1016/j.jece.2021.105483.

    Article  Google Scholar 

  75. Huang, T., Holden, J. A., Heath, D. E., O’Brien-Simpson, N. M., & O’Connor, A. J. (2019). Engineering highly effective antimicrobial selenium nanoparticles through control of particle size. Nanoscale, 11(31), 14937–14951. https://doi.org/10.1039/C9NR04424H.

    Article  Google Scholar 

  76. Saravanan, M., Barabadi, H., Vahidi, H., Webster, T. J., Medina-Cruz, D., Mostafavi, E., Vernet-Crua, A., CholulaDiaz, J. L., & Periakaruppan, P. (2021). Emerging theranostic silver and gold nanobiomaterials for breast cancer: Present status and future prospects. In Handbook on Nanobiomaterials for Therapeutics and Diagnostic Applications Elsevier pp 439–456. https://doi.org/10.1016/B978-0-12-821013-0.00004-0.

  77. Talank, N., Morad, H., Barabadi, H., Mojab, F., Amidi, S., Kobarfard, F., & Mostafavi, E. (2022). Bioengineering of green-synthesized silver nanoparticles: In vitro physicochemical, antibacterial, biofilm inhibitory, anticoagulant, and antioxidant performance. Talanta, 243, 123374. https://doi.org/10.1016/j.talanta.2022.123374.

    Article  Google Scholar 

  78. El-Sayed, E. S. R., Abdelhakim, H. K., & Ahmed, A. S. (2020). Solid-state fermentation for enhanced production of selenium nanoparticles by gamma-irradiated Monascus purpureus and their biological evaluation and photocatalytic activities. Bioprocess and Biosystems Engineering, 43, 797–809. https://doi.org/10.1007/s00449-019-02275-7.

    Article  Google Scholar 

  79. Pon Matheswari, P., Jenit Sharmila, G., & Murugan, C. (2022). Green synthesis of selenium nanoparticles using Delonix regia and Nerium oleander flower extract and evaluation of their antioxidant and antibacterial activities. Inorg Nano-Met, 1–12. https://doi.org/10.1080/24701556.2021.2025099.

  80. Das, P., Ghosal, K., Jana, N. K., Mukherjee, A., & Basak, P. (2019). Green synthesis and characterization of silver nanoparticles using Belladonna mother tincture and its efficacy as a potential antibacterial and anti-inflammatory agent. Materials Chemistry and Physics, 228, 310–317. https://doi.org/10.1016/j.matchemphys.2019.02.064.

    Article  Google Scholar 

  81. Fei, G. A. O., Youying, L. I., Xiao, F. A. N., Yankun, Z. H. A. N. G., & Ranran, H. O. U. (2022). Preparation, structural characterization, and in vitro anti-inflammatory activity of coptis teeta polysaccharide-selenium nanoparticles. Mod Food Sci Technol, 38(11), 175–184.

    Google Scholar 

  82. Benitha, G., Kumar, R., Ramani, P., & Ramalingam, K. (2023). Anti-inflammatory activity of Euphorbia tirucalli mediated selenium nanoparticles: An in vitro study. J Popul Ther Clin Pharmacol, 16, 275–281. https://doi.org/10.47750/jptcp.2023.30.16.037.

    Article  Google Scholar 

  83. Bagur, H., Poojari, C. C., Melappa, G., Rangappa, R., Chandrasekhar, N., & Somu, P. (2020). Biogenically synthesized silver nanoparticles using endophyte fungal extract of Ocimum tenuiflorum and evaluation of biomedical properties. J Clust Sci, 31, 1241–1255. https://doi.org/10.1007/s10876-019-01731-4.

    Article  Google Scholar 

  84. Nehru, L., Kandasamy, G. D., Sekar, V., Alshehri, M. A., Panneerselvam, C., Alasmari, A., & Kathirvel, P. (2023). Green synthesis of ZnO-NPs using endophytic fungal extract of Xylaria arbuscula from Blumea Axillaris and its biological applications. Artif Cells Nanomed Biotechnol, 51(1), 318–333. https://doi.org/10.1080/21691401.2023.2232654.

    Article  Google Scholar 

  85. Bindu, S., Mazumder, S., & Bandyopadhyay, U. (2020). Non-steroidal anti-inflammatory Drugs (NSAIDs) and organ damage: A current perspective. Biochem Pharmacology, 180, 114147. https://doi.org/10.1016/j.bcp.2020.114147.

    Article  Google Scholar 

  86. Zheng, X., & Bossier, P. (2023). Toxicity assessment and anti-vibrio activity of essential oils: Potential for application in shrimp aquaculture. Rev Aquac, 1–20. https://doi.org/10.1111/raq.12795.

  87. Yazhiniprabha, M., & Vaseeharan, B. (2019). In vitro and in vivo toxicity assessment of selenium nanoparticles with significant larvicidal and bacteriostatic properties. Mater Sci Eng C, 103, 109763. https://doi.org/10.1016/j.msec.2019.109763.

    Article  Google Scholar 

  88. Vundela, S. R., Kalagatur, N. K., Nagaraj, A., Kadirvelu, K., Chandranayaka, S., Kondapalli, K., & Poda, S. (2022). Multi-biofunctional properties of phytofabricated selenium nanoparticles from Carica papaya fruit extract: Antioxidant, antimicrobial, antimycotoxin, anticancer, and biocompatibility. Frontiers in Microbiology, 12, 4374. https://doi.org/10.3389/fmicb.2021.769891.

    Article  Google Scholar 

  89. Kalishwaralal, K., Jeyabharathi, S., Sundar, K., & Muthukumaran, A. (2016). A novel one-pot green synthesis of selenium nanoparticles and evaluation of its toxicity in zebrafish embryos. Artif Cells Nanomed Biotechnol, 44(2), 471–477. https://doi.org/10.3109/21691401.2014.962744.

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the management of Loyola College (Autonomous), Chennai, for providing essential facilities. We would also like to express our gratitude to Dr. S. Rajeshkumar, Nanobiomedicine laboratory, Saveetha Dental College and Hospitals, SIMATS, Chennai for providing facilities to carry out the research work.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

AK: Investigation, writing - original draft, EU: formal analysis SR: Conceptualization, designing the protocol, interpretation of data, and manuscript proofreading; and JG: Conceptualization, project administration, and writing – review, and editing. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to John Joel Gnanadoss.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Ethical statement.

The Fish Embryo Acute Toxicity experiment was carried out up to 96 hpf by following the Organisation for Economic Cooperation and Development (OECD) test guideline No. 236. Thus no further ethical permissions were required.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kathiravan, A., Udayan, E., Rajeshkumar, S. et al. Unveiling the Biological Potential of Mycosynthesized Selenium Nanoparticles from Endophytic Fungus Curvularia sp. LCJ413. BioNanoSci. 13, 2232–2251 (2023). https://doi.org/10.1007/s12668-023-01223-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-023-01223-w

Keywords

Navigation