Skip to main content
Log in

Biomedical Applications of Mycosynthesized Selenium Nanoparticles Using Penicillium expansum ATTC 36200

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

In this study, green and eco-friendly biosynthesis of selenium nanoparticles (Se-NPs) were performed using Penicillium expansum ATTC 36200 for multiple biomedical applications. Mycosynthesized Se-NPs were completely characterized using UV, FT-IR, XRD, SEM, and TEM techniques. Se-NPs biosynthesized by P. expansum was characterized as a spherical shape with average size 4 to 12.7 nm. Moreover, Se-NPs were evaluated for multiple biomedical applications as antimicrobial, antioxidant, and anticancer activities and hemocompatibility. Results illustrated that Se-NPs have potential antimicrobial activity against Gram-positive (Bacillus subtilis ATCC6051 and Staphylococcus aureus ATCC23235), Gram-negative bacteria (Escherichia coli ATCC8739and Pseudomonas aeruginosa ATCC9027), fungi (Candida albicans ATCC90028, Aspergillus niger RCMB 02724 and Aspergillus fumigatus RCMB 02568), and antioxidant activity. Additionally, Se-NPs exhibited anticancer activity against PC3 cell line; IC50 was 99.25 μg/mL. Meanwhile, they showed non-hemolytic activity on human RBCs at concentration up to 250 μg/mL. In conclusion, biosynthetic Se-NPs by P. expansum are promising for many safe-use biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Singh P, Kim Y-J, Zhang D, Yang D-C (2016) Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 34(7):588–599. https://doi.org/10.1016/j.tibtech.2016.02.006

    Article  CAS  PubMed  Google Scholar 

  2. Alam H, Khatoon N, Raza M, Ghosh PC, Sardar M (2019) Synthesis and characterization of nano selenium using plant biomolecules and their potential applications. BioNanoScience 9(1):96–104. https://doi.org/10.1007/s12668-018-0569-5

    Article  Google Scholar 

  3. Salem SS, Fouda A (2020) Green synthesis of metallic nanoparticles and their prospective biotechnological applications: an overview. Biol Trace Elem Res. https://doi.org/10.1007/s12011-020-02138-3

  4. Wadhwani SA, Shedbalkar UU, Singh R, Chopade BA (2016) Biogenic selenium nanoparticles: current status and future prospects. Appl Microbiol Biotechnol 100(6):2555–2566. https://doi.org/10.1007/s00253-016-7300-7

    Article  CAS  PubMed  Google Scholar 

  5. Mohamed AA, Abu-Elghait M, Ahmed NE, Salem SS (2020) Eco-friendly mycogenic synthesis of ZnO and CuO nanoparticles for in vitro antibacterial, antibiofilm, and antifungal applications. Biol Trace Elem Res. https://doi.org/10.1007/s12011-020-02369-4

  6. Alsharif SM, Salem SS, Abdel-Rahman MA, Fouda A, Eid AM, El-Din Hassan S, Awad MA, Mohamed AA (2020) Multifunctional properties of spherical silver nanoparticles fabricated by different microbial taxa. Heliyon 6(5):e03943. https://doi.org/10.1016/j.heliyon.2020.e03943

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lian S, Diko CS, Yan Y, Li Z, Zhang H, Ma Q, Qu Y (2019) Characterization of biogenic selenium nanoparticles derived from cell-free extracts of a novel yeast Magnusiomyces ingens. 3 Biotech 9(6):221. https://doi.org/10.1007/s13205-019-1748-y

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fouda A, Abdel-Maksoud G, Abdel-Rahman MA, Salem SS, Hassan SED, El-Sadany MAH (2019) Eco-friendly approach utilizing green synthesized nanoparticles for paper conservation against microbes involved in biodeterioration of archaeological manuscript. Int Biodeterior Biodegrad 142:160–169. https://doi.org/10.1016/j.ibiod.2019.05.012

    Article  CAS  Google Scholar 

  9. Fouda A, Salem SS, Wassel AR, Hamza MF, Shaheen TI (2020) Optimization of green biosynthesized visible light active CuO/ZnO nano-photocatalysts for the degradation of organic methylene blue dye. Heliyon 6(9):e04896. https://doi.org/10.1016/j.heliyon.2020.e04896

    Article  PubMed  PubMed Central  Google Scholar 

  10. Eid AM, Fouda A, Niedbała G, Hassan SED, Salem SS, Abdo AM, Hetta HF, Shaheen TI (2020) Endophytic streptomyces laurentii mediated green synthesis of Ag-NPs with antibacterial and anticancer properties for developing functional textile fabric properties. Antibiotics 9(10):1–18. https://doi.org/10.3390/antibiotics9100641

    Article  CAS  Google Scholar 

  11. Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8(1014). https://doi.org/10.3389/fmicb.2017.01014

  12. Mohamed AA, Fouda A, Abdel-Rahman MA, Hassan SED, El-Gamal MS, Salem SS, Shaheen TI (2019) Fungal strain impacts the shape, bioactivity and multifunctional properties of green synthesized zinc oxide nanoparticles. Biocatal Agric Biotechnol 19. https://doi.org/10.1016/j.bcab.2019.101103

  13. Salem SS, El-Belely EF, Niedbała G, Alnoman MM, Hassan SED, Eid AM, Shaheen TI, Elkelish A, Fouda A (2020) Bactericidal and in-vitro cytotoxic efficacy of silver nanoparticles (Ag-NPs) fabricated by endophytic actinomycetes and their use as coating for the textile fabrics. Nanomaterials 10(10):1–20. https://doi.org/10.3390/nano10102082

    Article  CAS  Google Scholar 

  14. Hasanin MS, Hashem AH, Abd El-Sayed ES, El-Saied H (2020) Green ecofriendly bio-deinking of mixed office waste paper using various enzymes from Rhizopus microsporus AH3: efficiency and characteristics. Cellulose:1–11

  15. Khalil AMA, Hashem AH, Abdelaziz AM (2019) Occurrence of toxigenic Penicillium polonicum in retail green table olives from the Saudi Arabia market. Biocatal Agric Biotechnol 21:101314

    Article  Google Scholar 

  16. Suleiman W, El-Sheikh H, Abu-Elreesh G, Hashem A (2018) Recruitment of Cunninghamella echinulata as an Egyptian isolate to produce unsaturated fatty acids. Res J Pharm, Biol Chem Sci 9(1):764–774

    CAS  Google Scholar 

  17. Suleiman W, El-Skeikh H, Abu-Elreesh G, Hashem A (2018) Isolation and screening of promising oleaginous Rhizopus sp and designing of Taguchi method for increasing lipid production. J Innov Pharm Biol 5(1):8–15

    CAS  Google Scholar 

  18. Hashem AH, Saied E, Hasanin MS (2020) Green and ecofriendly bio-removal of methylene blue dye from aqueous solution using biologically activated banana peel waste. Sustain Chem Pharm 18:100333

    Article  Google Scholar 

  19. Salem SS, Mohamed AA, Gl-Gamal MS, Talat M, Fouda A (2019) Biological decolorization and degradation of azo dyes from textile wastewater effluent by Aspergillus niger. Egypt J Chem 62(10):1799–1813. https://doi.org/10.21608/EJCHEM.2019.11720.1747

    Article  Google Scholar 

  20. Poborchii VV, Kolobov AV, Tanaka K (1998) An in situ Raman study of polarization-dependent photocrystallization in amorphous selenium films. Appl Phys Lett 72(10):1167–1169

    Article  CAS  Google Scholar 

  21. Presentato A, Piacenza E, Anikovskiy M, Cappelletti M, Zannoni D, Turner RJ (2018) Biosynthesis of selenium-nanoparticles and -nanorods as a product of selenite bioconversion by the aerobic bacterium Rhodococcus aetherivorans BCP1. New Biotechnol 41:1–8. https://doi.org/10.1016/j.nbt.2017.11.002

    Article  CAS  Google Scholar 

  22. Zhang J, Wang H, Yan X, Zhang L (2005) Comparison of short-term toxicity between Nano-Se and selenite in mice. Life Sci 76(10):1099–1109

    Article  CAS  PubMed  Google Scholar 

  23. Romero I, de Francisco P, Gutiérrez JC, Martín-González A (2019) Selenium cytotoxicity in Tetrahymena thermophila: new clues about its biological effects and cellular resistance mechanisms. Sci Total Environ 671:850–865. https://doi.org/10.1016/j.scitotenv.2019.03.115

    Article  CAS  PubMed  Google Scholar 

  24. Gautam PK, Kumar S, Tomar MS, Singh RK, Acharya A, Kumar S, Ram B (2017) Selenium nanoparticles induce suppressed function of tumor associated macrophages and inhibit Dalton’s lymphoma proliferation. Biochem Biophys Rep 12:172–184. https://doi.org/10.1016/j.bbrep.2017.09.005

    Article  PubMed  PubMed Central  Google Scholar 

  25. Li J, Shen B, Nie S, Duan Z, Chen K (2019) A combination of selenium and polysaccharides: promising therapeutic potential. Carbohydr Polym 206:163–173

    Article  CAS  PubMed  Google Scholar 

  26. Ramamurthy CH, Sampath KS, Arunkumar P, Kumar MS, Sujatha V, Premkumar K, Thirunavukkarasu C (2013) Green synthesis and characterization of selenium nanoparticles and its augmented cytotoxicity with doxorubicin on cancer cells. Bioprocess Biosyst Eng 36(8):1131–1139. https://doi.org/10.1007/s00449-012-0867-1

    Article  CAS  PubMed  Google Scholar 

  27. El-Sayyad GS, El-Bastawisy HS, Gobara M, El-Batal AI (2019) Gentamicin-assisted mycogenic selenium nanoparticles synthesized under gamma irradiation for robust reluctance of resistant urinary tract infection-causing pathogens. Biol Trace Elem Res:1–20

  28. Ingole AR, Thakare SR, Khati N, Wankhade AV, Burghate D (2010) Green synthesis of selenium nanoparticles under ambient condition. Chalcogenide Lett 7(7):485–489

    CAS  Google Scholar 

  29. Nancharaiah YV, Lens PN (2015) Selenium biomineralization for biotechnological applications. Trends Biotechnol 33(6):323–330

    Article  CAS  PubMed  Google Scholar 

  30. Khurana A, Tekula S, Saifi MA, Venkatesh P, Godugu C (2019) Therapeutic applications of selenium nanoparticles. Biomed Pharmacother 111:802–812

    Article  CAS  PubMed  Google Scholar 

  31. Yazhiniprabha M, Vaseeharan B (2019) In vitro and in vivo toxicity assessment of selenium nanoparticles with significant larvicidal and bacteriostatic properties. Mater Sci Eng C 103:109763

    Article  Google Scholar 

  32. Fouda A, Khalil A, El-Sheikh H, Abdel-Rhaman E, Hashem A (2015) Biodegradation and detoxification of bisphenol-A by filamentous fungi screened from nature. J Adv Biol Biotechnol 2:123–132

    Article  Google Scholar 

  33. Hashem AH, Hasanin MS, Khalil AMA, Suleiman WB (2019) Eco-green conversion of watermelon peels to single cell oils using a unique oleaginous fungus: Lichtheimia corymbifera AH13. Waste Biomass Valori:1–12

  34. Khalil AMA, Hashem AH (2018) Morphological changes of Conidiogenesis in two Aspergillus species. J Pure Appl Microbiol 12(4):2041–2049

    Article  CAS  Google Scholar 

  35. Yildirim A, Mavi A, Kara A (2001) Determination of antioxidant and antimicrobial activities of L. extracts. Rumex crispus. J Agric Food Chem 49(8)

  36. Khalil AMA, Abdelaziz AM, Khaleil MM, Hashem AH (2020) Fungal endophytes from leaves of Avicennia marina growing in semi-arid environment as a promising source for bioactive compounds. Lett Appl Microbiol

  37. Slater T, Sawyer B, Sträuli U (1963) Studies on succinate-tetrazolium reductase systems: III. Points of coupling of four different tetrazolium salts III. Points of coupling of four different tetrazolium saltsd. Biochim Biophys Acta 77:383–393

    Article  CAS  PubMed  Google Scholar 

  38. Van de Loosdrecht A, Beelen R, Ossenkoppele G, Broekhoven M, Langenhuijsen M (1994) A tetrazolium-based colorimetric MTT assay to quantitate human monocyte mediated cytotoxicity against leukemic cells from cell lines and patients with acute myeloid leukemia. J Immunol Methods 174(1–2):311–320

    Article  PubMed  Google Scholar 

  39. Alley MC, Scudiero DA, Monks A, Hursey ML, Czerwinski MJ, Fine DL, Abbott BJ, Mayo JG, Shoemaker RH, Boyd MR (1988) Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res 48(3):589–601

    CAS  PubMed  Google Scholar 

  40. Zonaro E, Lampis S, Turner RJ, Qazi SJS, Vallini G (2015) Biogenic selenium and tellurium nanoparticles synthesized by environmental microbial isolates efficaciously inhibit bacterial planktonic cultures and biofilms. Front Microbiol 6:584

    Article  PubMed  PubMed Central  Google Scholar 

  41. Mosallam FM, El-Sayyad GS, Fathy RM, El-Batal AI (2018) Biomolecules-mediated synthesis of selenium nanoparticles using Aspergillus oryzae fermented Lupin extract and gamma radiation for hindering the growth of some multidrug-resistant bacteria and pathogenic fungi. Microb Pathog 122:108–116

    Article  CAS  PubMed  Google Scholar 

  42. Salem SS, Fouda MMG, Fouda A, Awad MA, Al-Olayan EM, Allam AA, Shaheen TI (2020) Antibacterial, cytotoxicity and larvicidal activity of green synthesized selenium nanoparticles using Penicillium corylophilum. J Clust Sci. https://doi.org/10.1007/s10876-020-01794-8

  43. Abbas H, Abou Baker D (2020) Biological evaluation of selenium nanoparticles biosynthesized by Fusarium semitectum as antimicrobial and anticancer agents. Egypt J Chem 63(4):18–19

    Google Scholar 

  44. Shoeibi S, Mashreghi M (2017) Biosynthesis of selenium nanoparticles using Enterococcus faecalis and evaluation of their antibacterial activities. J Trace Elem Med Biol 39:135–139. https://doi.org/10.1016/j.jtemb.2016.09.003

    Article  CAS  PubMed  Google Scholar 

  45. Aref MS, Salem SS (2020) Bio-callus synthesis of silver nanoparticles, characterization, and antibacterial activities via Cinnamomum camphora callus culture. Biocatal Agric Biotechnol 27:101689. https://doi.org/10.1016/j.bcab.2020.101689

    Article  Google Scholar 

  46. El-Sayed E-SR, Abdelhakim HK, Ahmed AS (2020) Solid-state fermentation for enhanced production of selenium nanoparticles by gamma-irradiated Monascus purpureus and their biological evaluation and photocatalytic activities. Bioprocess Biosyst Eng:1–13

  47. Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18(17):6679–6686

    Article  CAS  Google Scholar 

  48. Cui J-L, Guo T-T, Ren Z-X, Zhang N-S, Wang M-L (2015) Diversity and antioxidant activity of culturable endophytic fungi from alpine plants of Rhodiola crenulata, R. angusta, and R. sachalinensis. PLoS One 10(3)

  49. Li Y, Li X, Wong Y-S, Chen T, Zhang H, Liu C, Zheng W (2011) The reversal of cisplatin-induced nephrotoxicity by selenium nanoparticles functionalized with 11-mercapto-1-undecanol by inhibition of ROS-mediated apoptosis. Biomaterials 32(34):9068–9076. https://doi.org/10.1016/j.biomaterials.2011.08.001

    Article  CAS  PubMed  Google Scholar 

  50. Tinggi U (2008) Selenium: its role as antioxidant in human health. Environ Health Prev Med 13(2):102–108. https://doi.org/10.1007/s12199-007-0019-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gunti L, Dass RS, Kalagatur NK (2019) Phytofabrication of selenium nanoparticles from Emblica officinalis fruit extract and exploring its biopotential applications: antioxidant, antimicrobial, and biocompatibility. Front Microbiol 10:931

    Article  PubMed  PubMed Central  Google Scholar 

  52. Zhang W, Zhang J, Ding D, Zhang L, Muehlmann LA, Deng S-e, Wang X, Li W, Zhang W (2018) Synthesis and antioxidant properties of Lycium barbarum polysaccharides capped selenium nanoparticles using tea extract. Artif Cells Nanomed Biotechnol 46(7):1463–1470. https://doi.org/10.1080/21691401.2017.1373657

    Article  CAS  PubMed  Google Scholar 

  53. Malagoli D (2007) A full-length protocol to test hemolytic activity of palytoxin on human erythrocytes. Invertebr Surviv J 4(2):92–94

    Google Scholar 

  54. Aula S, Lakkireddy S, Swamy A, Kapley A, Jamil K, Tata NR, Hembram K (2014) Biological interactions in vitro of zinc oxide nanoparticles of different characteristics. Materials Research Express 1(3):035041

    Article  CAS  Google Scholar 

  55. Ioset J-R, Brun R, Wenzler T, Kaiser M, Yardley V (2009) Drug screening for kinetoplastids diseases. A Training Manual for Screening in Neglected Diseases

  56. Aboul-Fadl T (2005) Selenium derivatives as cancer preventive agents. Curr Med Chem Anticancer Agents 5(6):637–652

    Article  CAS  PubMed  Google Scholar 

  57. Pi J, Yang F, Jin H, Huang X, Liu R, Yang P, Cai J (2013) Selenium nanoparticles induced membrane bio-mechanical property changes in MCF-7 cells by disturbing membrane molecules and F-actin. Bioorg Med Chem Lett 23(23):6296–6303. https://doi.org/10.1016/j.bmcl.2013.09.078

    Article  CAS  PubMed  Google Scholar 

  58. A.M. Youssef, M.S. Hasanin, M.E. Abd El-Aziz, O.M. Darwesh, (2019) Green, economic, and partially biodegradable wood plastic composites via enzymatic surface modification of lignocellulosic fibers. Heliyon 5 (3):e01332

  59. Mohamed S. Hasanin, Gaber O. Moustafa, (2020) New potential green, bioactive and antimicrobial nanocomposites based on cellulose and amino acid. International Journal of Biological Macromolecules 144:441-448

    Article  CAS  PubMed  Google Scholar 

  60. Saad El-Din Hassan, Amr Fouda, Ahmed A. Radwan, Salem S. Salem, Mohammed G. Barghoth, Mohamed A. Awad, Abdullah M. Abdo, Mamdouh S. El-Gamal (2019) Endophytic actinomycetes Streptomyces spp mediated biosynthesis of copper oxide nanoparticles as a promising tool for biotechnological applications. JBIC Journal of Biological Inorganic Chemistry 24 (3):377-393

  61. Amr Fouda, Saad EL-Din Hassan, Salem S. Salem, Tharwat I. Shaheen (2018) In-Vitro cytotoxicity, antibacterial, and UV protection properties of the biosynthesized Zinc oxide nanoparticles for medical textile applications. Microbial Pathogenesis 125:252-261

    Article  CAS  PubMed  Google Scholar 

  62. Asem A. Mohamed, Amr Fouda, Mamdoh S Elgamal, Saad EL-Din Hassan, Tharwat I Shaheen, Salem S Salem (2017) Enhancing of cotton fabric antibacterial properties by silver nanoparticles synthesized by new Egyptian strain Fusarium keratoplasticum A1-3.. Egyptian Journal of Chemistry 60 (Conference Issue):4-7

  63. Ahmed S. Elfeky, Salem S. Salem, Ahmed S. Elzaref, Medhat E. Owda, Hassan A. Eladawy, Ahmed M. Saeed, Mohamed A. Awad, Ragab E. Abou-Zeid, Amr Fouda (2020) Multifunctional cellulose nanocrystal /metal oxide hybrid, photo-degradation, antibacterial and larvicidal activities. Carbohydrate Polymers 230:115711

    Article  CAS  PubMed  Google Scholar 

  64. Tharwat I. Shaheen, Salem S. Salem, Saad Zaghloul (2019) A New Facile Strategy for Multifunctional Textiles Development through In Situ Deposition of SiO /TiO Nanosols Hybrid. Industrial & Engineering Chemistry Research 58 (44):20203-20212

  65. Amr Fouda, Salem S. Salem, Ahmed R. Wassel, Mohammed F. Hamza, Th.I. Shaheen, (2020) Optimization of green biosynthesized visible light active CuO/ZnO nano-photocatalysts for the degradation of organic methylene blue dye. Heliyon 6 (9):e04896

  66. Amr Fouda, Saad El-Din Hassan, Abdullah M. Abdo, Mamdouh S. El-Gamal, (2020) Antimicrobial, Antioxidant and Larvicidal Activities of Spherical Silver Nanoparticles Synthesized by Endophytic Streptomyces spp. Biological Trace Element Research 195 (2):707-724

  67. Amr Fouda, Gomaa Abdel-Maksoud, Mohamed Ali Abdel-Rahman, Ahmed Mohamed Eid, Mohammed G. Barghoth, Mohamad Abdel-Haleem El-Sadany, (2019) Monitoring the effect of biosynthesized nanoparticles against biodeterioration of cellulose-based materials by Aspergillus niger. Cellulose 26 (11):6583-6597

  68. Mohmed A, Hassan S, Fouda A, Elgamal M, Salem S (2017) Extracellular biosynthesis of silver nanoparticles Using aspergillus sp. and evaluation of their antibacterial and cytotoxicity. Journal of Applied Life Sciences International 11 (2):1-12

  69. EL-Din HS, Salem SS, Fouda A, Awad MA, El-Gamal MS, Abdo AM (2019) New approach for antimicrobial activity and bio-control of various pathogens by biosynthesized copper nanoparticles using endophytic actinomycetes. J Radiat Res Appl 11 (3):262-270

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salem S. Salem.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashem, A.H., Khalil, A.M.A., Reyad, A.M. et al. Biomedical Applications of Mycosynthesized Selenium Nanoparticles Using Penicillium expansum ATTC 36200. Biol Trace Elem Res 199, 3998–4008 (2021). https://doi.org/10.1007/s12011-020-02506-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02506-z

Keywords

Navigation