Skip to main content
Log in

Green Synthesis of Metal Oxide Nanoparticles: a Novel Approach to Treat Diabetes Mellitus

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Diabetes mellitus is a metabolic disorder in which a person fails to produce adequate insulin or insulin reactions to cells, so that blood sugar levels are high in diabetes patients. Nanoparticles of small particle size have very significant effects against other types of dosage. Diabetes is treated with metal oxide-like nanoparticles such as zinc oxide, silver oxide, cerium oxide, magnesium oxide, vanadium oxide, chromium oxide, and gold nanoparticles. Different plants are used for the green synthesis of zinc, silver, magnesium oxide, cerium oxide, and golden nanoparticles. These analyses include separate in vitro and in vivo tests. The in vitro studies include nanoparticles characterization, antioxidant studies, anti-diabetic studies, and green synthesized nanoparticles phytochemical studies. In the in vivo trials, the animal research involves a range of test models, diabetes induction, experimental design, sample collection, and blood sample characterization by different testing methods. Studies in in vitro and in vivo reveal nanoparticles of metal oxide to be anti-diabetic.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Kumar, et.al, Acute and chronic animal models for the evaluation of anti-diabetic agents, Cardiovascular Diabetology 11 (2012) 9.

  2. Nasrollahzadeh, M., Sajadi, S. M., Sajjadi, M., & Issaabadi, Z. (2019). An introduction to nanotechnology in: Interface Science and Technology (pp. 1–27). Elsevier. https://doi.org/10.1016/B978-0-12-813586-0.00001-8

    Book  Google Scholar 

  3. Mittal, A. K., Chisti, Y., & Banerjee, U. C. (2013). Synthesis of metallic nanoparticles using plant extracts. Biotechnology Advances, 31, 346–356. https://doi.org/10.1016/j.biotechadv.2013.01.003

    Article  Google Scholar 

  4. Thompson, K. H., Lichter, J., LeBel, C., Scaife, M. C., McNeill, J. H., & Orvig, C. (2009). Vanadium treatment of type 2 diabetes: A view to the future. Journal of Inorganic Biochemistry, 103, 554–558. https://doi.org/10.1016/j.jinorgbio.2008.12.003

    Article  Google Scholar 

  5. Wang, Z. Q., & Cefalu, W. T. (2010). Current concepts about chromium supplementation in type 2 diabetes and insulin resistance. Current Diabetes Reports, 10, 145–151. https://doi.org/10.1007/s11892-010-0097-3

    Article  Google Scholar 

  6. Naghsh, N., & Kazemi, S. (2014). Effect of nano-magnesium oxide on glucose concentration and lipid profile in diabetic laboratory mice, Iranian. Journal of Pharmaceutical Sciences, 10, 63–68.

    Google Scholar 

  7. Jeevanandam, J. (2017). Enhanced synthesis and delivery of magnesium oxide nanoparticles for reverse insulin resistance in type 2 diabetes mellitus. Curtin University.

    Google Scholar 

  8. Nithiya, S., & Sangeetha, R. (2014). Amylase inhibitory potential of silver nanoparticles biosynthesized using Breyniaretusa leaf extract. World Journal of Pharmaceutical Research, 3, 1055–1066.

    Google Scholar 

  9. Alkaladi, A., Abdelazim, A. M., & Afifi, M. (2014). Antidiabetic activity of zinc oxide and silver nanoparticles on streptozotocin-induced diabetic rats. International Journal of Molecular Sciences., 15, 2015–2023. https://doi.org/10.3390/ijms15022015

    Article  Google Scholar 

  10. Asani, S. C., Umrani, R. D., & Paknikar, K. M. (2016). In vitro studies on the pleotropic antidiabetic effects of zinc oxide nanoparticles. Nanomedicine, 11, 1671–1687. https://doi.org/10.2217/nnm-2016-0119

    Article  Google Scholar 

  11. Umrani, R. D., & Paknikar, K. M. (2014). Zinc oxide nanoparticles show antidiabetic activity in streptozotocin-induced type 1 and 2 diabetic rats. Nanomedicine, 9, 89–104. https://doi.org/10.2217/NNM.12.205

    Article  Google Scholar 

  12. Bedi, P., & Kaur, A. (2015). An overview on uses of zinc oxide nanoparticles, World. Journal of Pharmacy and Pharmaceutical Sciences, 4, 1177–1196.

    Google Scholar 

  13. Lushchak, O., Zayachkivska, A., & Vaiserman, A. (2018). Metallic nanoantioxidants as potential therapeutics for type 2 diabetes: A hypothetical background and translational perspectives. Oxidative Medicine and Cellular Longevity, 2018. https://doi.org/10.1155/2018/3407375

  14. Amiri, A., Dehkordi, R. A. F., Heidarnejad, M. S., & Dehkordi, M. J. (2018). Effect of the zinc oxide nanoparticles and thiamine for the management of diabetes in alloxan-induced mice: A stereological and biochemical study. Biological Trace Element Research, 181, 258–264. https://doi.org/10.1007/s12011-017-1035-x

    Article  Google Scholar 

  15. Sengani, M. (2017). Identification of potential antioxidant indices by biogenic gold nanoparticles in hyperglycemic Wistar rats. Environmental Toxicology and Pharmacology, 50, 11–19. https://doi.org/10.1016/j.etap.2017.01.007

    Article  Google Scholar 

  16. Rehana, D., Mahendiran, D., Kumar, R. S., & Rahiman, A. K. (2017). In vitro antioxidant and antidiabetic activities of zinc oxide nanoparticles synthesized using different plant extracts. Bioprocess and Biosystems Engineering, 40, 943–957. https://doi.org/10.1007/s00449-017-1758-2

    Article  Google Scholar 

  17. Jiang, J., Pi, J., & Cai, J. (2018). The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorganic Chemistry and Applications, 2018. https://doi.org/10.1155/2018/1062562

  18. Yong, N. L., Ahmad, A., & Mohammad, A. W. (2013). Synthesis and characterization of silver oxide nanoparticles by a novel method. International Journal Science Engineering Research, 4, 155–158.

    Google Scholar 

  19. De Souza, C. D., Nogueira, B. R., & Rostelato, M. E. C. (2019). Review of the methodologies used in the synthesis gold nanoparticles by chemical reduction. Journal of Alloys and Compounds, 798, 714–740. https://doi.org/10.1016/j.jallcom.2019.05.153

    Article  Google Scholar 

  20. Zhang, Q. L., Yang, Z. M., & Ding, B. J. (2009). Synthesis of cerium oxide nanoparticles by the precipitation method. Materials Science Forum, 610, 233–238. https://doi.org/10.4028/www.scientific.net/MSF.610-613.233

    Article  Google Scholar 

  21. Sharma, M., & Sharma, D. G. M. (2018). Synthesis of nanostructured magnesium oxide by sol gel method and its characterization. International Journal of Pharmaceutical Sciences and Research, 9, 1576–1581. https://doi.org/10.13040/IJPSR.0975-8232.9(4).1576-81

    Article  Google Scholar 

  22. Sundrarajan, M., Ambika, S., & Bharathi, K. (2015). Plant-extract mediated synthesis of ZnO nanoparticles using Pongamiapinnata and their activity against pathogenic bacteria. Advanced Powder Technology, 26, 1294–1299. https://doi.org/10.1016/j.apt.2015.07.001

    Article  Google Scholar 

  23. Bala, N., Saha, S., Chakraborty, M., Maiti, M., Das, S., Basu, R., & Nandy, P. (2015). Green synthesis of zinc oxide nanoparticles using Hibiscus subdariffa leaf extract: Effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity. RSC Advances, 5, 4993–5003. https://doi.org/10.1039/c4ra12784f

    Article  Google Scholar 

  24. Shanker, K., Naradala, J., Mohan, G. K., Kumar, G. S., & Pravallika, P. L. (2017). A sub-acute oral toxicity analysis and comparative in vivo anti-diabetic activity of zinc oxide, cerium oxide, silver nanoparticles, and Momordicacharantia in streptozotocin-induced diabetic Wistar rats. RSC Advances, 7, 37158–37167. https://doi.org/10.1039/c7ra05693a

    Article  Google Scholar 

  25. Bayrami, A., Parvinroo, S., Habibi-Yangjeh, A., & Rahim Pouran, S. (2018). Bio-extract-mediated ZnO nanoparticles: Microwave-assisted synthesis, characterization and antidiabetic activity evaluation. Artificial Cells, Nanomedicine, and Biotechnology, 46, 730–739. https://doi.org/10.1080/21691401.2017.1337025

    Article  Google Scholar 

  26. Arvanag, F. M., Bayrami, A., Habibi-Yangjeh, A., & Pouran, S. R. (2019). A comprehensive study on antidiabetic and antibacterial activities of ZnO nanoparticles biosynthesized using Silybummarianum L seed extract. Materials Science and Engineering: C, 97, 397–405. https://doi.org/10.1016/j.msec.2018.12.058

    Article  Google Scholar 

  27. Bayrami, A., Haghgooie, S., Pouran, S. R., Mohammadi, F., & Habibi-Yangjeh, A. (2020). Synergistic antidiabetic activity of ZnO nanoparticles encompassed by Urticadioica extract. Advanced Powder Technology. https://doi.org/10.1016/j.apt.2020.03.004

  28. Balan, K., Qing, W., Wang, Y., Liu, X., Palvannan, T., Wang, Y., Ma, F., & Zhang, Y. (2016). Antidiabetic activity of silver nanoparticles from green synthesis using Lonicera japonica leaf extract. Rsc Advances, 6, 40162–40168. https://doi.org/10.1039/c5ra24391b

    Article  Google Scholar 

  29. Sengottaiyan, A., Aravinthan, A., Sudhakar, C., Selvam, K., Srinivasan, P., Govarthanan, M., Manoharan, K., & Selvankumar, T. (2016). Synthesis and characterization of Solanumnigrum-mediated silver nanoparticles and its protective effect on alloxan-induced diabetic rats. Journal of Nanostructure in Chemistry, 6, 41–48. https://doi.org/10.1007/s40097-015-0178-6

    Article  Google Scholar 

  30. Campoy, A. H. G., Gutierrez, R. M. P., Manriquez-Alvirde, G., & Ramirez, A. M. (2018). Protection of silver nanoparticles using Eysenhardtiapolystachya in peroxide-induced pancreatic β-cell damage and their antidiabetic properties in zebrafish. International Journal of Nanomedicine, 13, 2601. https://doi.org/10.2147/IJN.S163714

    Article  Google Scholar 

  31. Govindappa, M., Hemashekhar, B., Arthikala, M.-K., Rai, V. R., & Ramachandra, Y. L. (2018). Characterization, antibacterial, antioxidant, antidiabetic, anti-inflammatory and antityrosinase activity of green synthesized silver nanoparticles using Calophyllumtomentosum leaves extract. Results in Physics, 9, 400–408. https://doi.org/10.1016/j.rinp.2018.02.049

    Article  Google Scholar 

  32. Saratale, R. G., Shin, H. S., Kumar, G., Benelli, G., Kim, D.-S., & Saratale, G. D. (2018). Exploiting antidiabetic activity of silver nanoparticles synthesized using Punicagranatum leaves and anticancer potential against human liver cancer cells (HepG2). Artificial Cells Nanomedicine, and Biotechnology, 46, 211–222. https://doi.org/10.1080/21691401.2017.1337031

    Article  Google Scholar 

  33. Das, G., Patra, J. K., Debnath, T., Ansari, A., & Shin, H.-S. (2019). Investigation of antioxidant, antibacterial, antidiabetic, and cytotoxicity potential of silver nanoparticles synthesized using the outer peel extract of Ananascomosus (L.). PloS One, 14, e0220950. https://doi.org/10.1371/journal.pone.0220950

    Article  Google Scholar 

  34. Kalakotla, S., Jayarambabu, N., Mohan, G. K., Mydin, R. B. S., & Gupta, V. R. (2019). A novel pharmacological approach of herbal mediated cerium oxide and silver nanoparticles with improved biomedical activity in comparison with Lawsoniainermis. Colloids and Surfaces B: Biointerfaces, 174, 199–206. https://doi.org/10.1016/j.colsurfb.2018.11.014

    Article  Google Scholar 

  35. Jini, D., & Sharmila, S. (2020). Green synthesis of silver nanoparticles from Allium cepa and its in vitro antidiabetic activity. Materials Today: Proceedings, 22, 432–438. https://doi.org/10.1016/j.matpr.2019.07.672

    Article  Google Scholar 

  36. Karthick, V., Kumar, V. G., Dhas, T. S., Singaravelu, G., Sadiq, A. M., & Govindaraju, K. (2014). Effect of biologically synthesized gold nanoparticles on alloxan-induced diabetic rats—an in vivo approach. Colloids and Surfaces B: Biointerfaces, 122, 505–511. https://doi.org/10.1016/j.colsurfb.2014.07.022

    Article  Google Scholar 

  37. Opris, R., Tatomir, C., Olteanu, D., Moldovan, R., Moldovan, B., David, L., Nagy, A., Decea, N., Kiss, M. L., & Filip, G. A. (2017). The effect of Sambucusnigra L. extract and phytosinthesized gold nanoparticles on diabetic rats. Colloids and Surfaces B: Biointerfaces, 150, 192–200. https://doi.org/10.1016/j.colsurfb.2016.11.033

    Article  Google Scholar 

  38. Jeevanandam, J., San Chan, Y., & Danquah, M. K. (2017). Biosynthesis and characterization of MgO nanoparticles from plant extracts via induced molecular nucleation. New Journal of Chemistry, 41, 2800–2814. https://doi.org/10.1039/x0xx00000x

    Article  Google Scholar 

  39. Robkhob, P., Ghosh, S., Bellare, J., Jamdade, D., Tang, I.-M., & Thongmee, S. (2020). Effect of silver doping on antidiabetic and antioxidant potential of ZnOnanorods. Journal of Trace Elements in Medicine and Biology, 58, 126448. https://doi.org/10.1016/j.jtemb.2019.126448

    Article  Google Scholar 

  40. Kishore, L., Kajal, A., & Kaur, N. (2017). Role of nicotinamide in streptozotocin induced diabetes in animal models. Journal Endocrinol Thyroid Research, 2, 1–4. https://doi.org/10.19080/JETR.2017.02.555577

    Article  Google Scholar 

  41. Nazarizadeh, A., & Asri-Rezaie, S. (2016). Comparative study of antidiabetic activity and oxidative stress induced by zinc oxide nanoparticles and zinc sulfate in diabetic rats. AAPS Pharm Science Technology, 17, 834–843. https://doi.org/10.1208/s12249-015-0405-y

    Article  Google Scholar 

  42. Hussein, J., Attia, M. F., El Bana, M., El-Daly, S. M., Mohamed, N., El-Khayat, Z., & El-Naggar, M. E. (2019). Solid state synthesis of docosahexaenoic acid-loaded zinc oxide nanoparticles as a potential antidiabetic agent in rats. International Journal of Biological Macromolecules, 140, 1305–1314. https://doi.org/10.1016/j.ijbiomac.2019.08.201

    Article  Google Scholar 

  43. Ibarra-Leal, J. J., Yocupicio, L., Apolinar-Iribe, A., Díaz-Reval, I., Parra-Delgado, H., Limón-Miranda, S., Sánchez-Pastor, E. A., & Virgen-Ortiz, A. (2019). In vivo zinc oxide nanoparticles induces acute hyperglycemic response a dose-dependent and route of administration in healthy and diabetic rats. Beilstein Archives, 2019, 75. https://doi.org/10.3762/bxiv.2019.75.v1

    Article  Google Scholar 

  44. Choudhari, V. P., Gore, K. P., & Pawar, A. T. (2017). Antidiabetic, antihyperlipidemic activities and herb–drug interaction of a polyherbal formulation in streptozotocin induced diabetic rats. Journal of Ayurveda and Integrative Medicine, 8, 218–225. https://doi.org/10.1016/j.jaim.2016.11.002

    Article  Google Scholar 

  45. Patil, A., Nirmal, S., Pattan, S., Tambe, V., & Tare, M. (2012). Antidiabetic effect of polyherbal combinations in STZ induced diabetes involve inhibition of α-amylase and α-glucosidase with amelioration of lipid profile. Phytopharmacology, 2, 46–57.

    Google Scholar 

Download references

Acknowledgements

Thanks to the Sinhgad Institute of Pharmacy, Narhe, Pune-41, the authors would like to have the requisite infrastructural research facilities.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

All persons who meet authorship criteria are listed as authors, and all authors certify that they have participated sufficiently in the work to take public responsibility for the content, including participation in the concept, design, analysis, writing, or revision of the manuscript. Furthermore, each author certifies that this material or similar material has not been and will not be submitted to or published in any other publication.

Conception and design of study: SG and VC. Acquisition of data: SV. Analysis and/or interpretation of data: AB and SG. Drafting the manuscript: VG and SB. Revising the manuscript critically for important intellectual content: VC, SG, and AB

Corresponding author

Correspondence to Shubhangee Gaikwad.

Ethics declarations

Ethical approval

As no animal study is involved so, the ethical approval is not required.

Informed Consent

None.

Research Involving Humans and Animals Statement

None.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

The study of nanoparticles of metal oxide (NPs) for diabetes care.

Green synthesis approach for NPs is harmless, environmentally friendly, and without side effect on the chemical method.

This review provides information of research analysis of metal oxide nanoparticles alternate treatment for diabetes mellitus.

Detailed account on practical aspects of metal oxide nanoparticle synthesis and evaluation for diabetic activity.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaikwad, S., Vora, S., Bansode, A. et al. Green Synthesis of Metal Oxide Nanoparticles: a Novel Approach to Treat Diabetes Mellitus. BioNanoSci. 13, 1582–1592 (2023). https://doi.org/10.1007/s12668-023-01205-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-023-01205-y

Keywords

Navigation