Skip to main content

Plant-Mediated Synthesis and Characterization of Zinc Oxide Nanoparticles

  • Chapter
  • First Online:
Metal and Metal-Oxide Based Nanomaterials

Part of the book series: Smart Nanomaterials Technology ((SNT))

  • 109 Accesses

Abstract

Nanotechnology, one of the fastest growing branches of science, revolutionized traditional science in every aspect. The world is witnessing the swing of every aspect of science toward nanotechnology. This science provides more surface functionality in the given volume, but sometimes other characters are too improved compared to the original or bulky materials. Zinc and zinc-based products are in high demand due to their use in almost all fields that service humanity. Zinc at its nano-range proved more potent than the normal one, and zinc oxide nanoparticles are presently used in every industry (paints, rubber, cosmetics, food, bio-imaging, pharmacognosy, and pharmacology). Further, zinc oxide nanoparticles synthesized by the green route promote their use frequently due to their nontoxic, more stable and easier to synthesize, and excellent biocompatibility compared to the other methods. This chapter attempts to summarize the importance of zinc oxide nanoparticles, their synthesis, and the different tools used to characterize the synthesized nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbasi, B. H., Anjum, S., & Hano, C. (2017). Differential effect of In vitro cultures of Linum usitatissimum L. on biosynthesis, stability, antibacterial and antileishmanial activites of Zinc oxide nanoparticles: A mechanistic approach. Royal Society of Chemistry, 7, 15931–15943.

    CAS  Google Scholar 

  • Abdelsattar, A. S., Farouk, W. M., Gouda, S. M., Safwat, A., Hakim, T. A., & El-Shibiny, A. (2022). Utilization of Ocimum basilicum extracts for zinc oxide nanoparticles synthesis and their antibacterial activity after a novel combination with phage. Materials Letters, 309, 131344.

    Article  CAS  Google Scholar 

  • Agarwal, H., Menon, S., & Shanmugam, V. K. (2020). Functionalization of zinc oxide nanoparticles using Mucuna pruriens and its antibacterial activity. Surfaces and Interfaces, 19, 100521.

    Article  CAS  Google Scholar 

  • Aggarwal, H., Kumar, S. V., & Kumar, R. S. (2017). A review on green synthesis of Zinc oxide nanoparticles-an eco-friendly approach. Resource-Efficient Technologies. https://doi.org/10.1016/j.reffit.2017.03.002

    Article  Google Scholar 

  • Alhujaily, M., Albukhaty, S., Yusuf, M., Mohammed, M. K., Sulaiman, G. M., Al-Karagoly, H., & AlMalki, F. A. (2022). Recent advances in plant-mediated zinc oxide nanoparticles with their significant biomedical properties. Bioengineering, 9(10), 1–19.

    Google Scholar 

  • Amarnath, K., Kumar, J., Reddy, T., Mahesh, V., Ayyappan, S. R., & Nellore, J. (2012). Synthesis and characterization of chitosan and grape polyphenols stabilized palladium nanoparticles and their antibacterial activity. Colloid Surface, 92, 254–261.

    Article  CAS  Google Scholar 

  • Ambika, S., & Sundrarajan, M. (2015). Antibacterial behavior of Vitex negundo extract assistedZnO nanoparticles against pathogenic bacteria. Journal of Photochemistry and Photobiology b: Biology, 146, 52–57.

    Article  CAS  Google Scholar 

  • Bachheti, R. K., Abate, L., Hunde, Y., Tadesse, M. G., Bachheti, A., Pandey, D. P., Sharma, A., Zebeaman, M., & Husen, A. (2023). Essential oils from medicinal plants and their role in nanoparticles synthesis, characterization, and applications. In R. K. Bachheti & A. Bachheti (Eds.), Secondary metabolites from medicinal plants (pp. 177–198). CRC Press.

    Chapter  Google Scholar 

  • Bachheti, A., Bachheti, R. K., Abate, L., & Husen, A. (2022). Current status of Aloe-based nanoparticle fabrication, characterization and their application in some cutting-edge areas. South African Journal of Botany., 147, 1058–1069.

    Article  Google Scholar 

  • Bachheti, R. K., Fikadu, A., Bachheti, A., & Husen, A. (2020a). Biogenic fabrication of nanomaterials from flower-based chemical compounds, characterization and their various applications: A review. Saudi Journal of Biological Sciences., 27(10), 2551–2562.

    Article  Google Scholar 

  • Bachheti, R. K., Sharma, A., Bachheti, A., Husen, A., Shanka, G. M., & Pandey, D. P. (2020b). Nanomaterials from various forest tree species and their biomedical applications. In A. Husen & M. Jawaid (Eds.), Nanomaterials for agriculture and forestry applications (pp. 81–106). Elsevier. https://doi.org/10.1016/B978-0-12-817852-2.00004-4

  • Bachheti, R. K., Abate, L., Bachheti, A., Madhusudhan, A., & Husen, A. (2021). Algae-, fungi-, and yeast-mediated biological synthesis of nanoparticles and their various biomedical applications. In Handbook of greener synthesis of nanomaterials and compounds (pp. 701–734). Elsevier. https://doi.org/10.1016/B978-0-12-821938-6.00022-0

  • Bachheti, R. K., Konwarh, R., Gupta, V., Husen, A., & Joshi, A. (2019). Green synthesis of iron oxide nanoparticles: Cutting edge technology and multifaceted applications. In Nanomaterials and plant potential (pp. 239–259). Springer. https://doi.org/10.1007/978-3-030-05569-1_9

  • Bachheti, R. K., Godebo, Y., Bachheti, A., Yassin, M. O., & Husen, A. (2020c). Root-based fabrication of metal/metal-oxide nanomaterials and their various applications. In A. Husen, & M. Jawaid (Eds.), Nanomaterials for agriculture and forestry applications (pp.135–166). Elsevier. https://doi.org/10.1016/B978-0-12-817852-2.00006-8

  • Bala, N., Saha, S., Chakraborty, M., Maiti, M., Das, S., Basu, R., & Nandy, P. (2015). Green synthesis of zinc oxide nanoparticles using Hibiscus subdariffa leaf extract: Effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity. RSC Advances, 5(7), 4993–5003.

    Article  CAS  Google Scholar 

  • Belay, T., Worku, L. A., Bachheti, R. K., Bachheti, A., & Husen, A. (2023). Nanomaterials: Introduction, synthesis, characterization, and applications. In A. Husen & K. S. Siddiqi (Eds.), Advances in smart nanomaterials and their applications (pp. 1–21). Elsevier.

    Google Scholar 

  • Bhumi, G., & Savithramma, N. (2014). Biological synthesis of zinc oxide nanoparticles from Catharanthus roseus (L.) G. Don. Leaf extract and validation for antibacterial activity. International Journal of Drug Development and Research, 6(1), 208–214.

    Google Scholar 

  • Chawla, S., Singh, S., & Husen, A. (2023). Smart nanomaterials targeting pathological hypoxia. Springer Nature Singapore Pte Ltd. ISBN: 978-981-99-1717-4. https://doi.org/10.1007/978-981-99-1718-1

  • Divya, M. J., Sowmia, C., Joona, K., & Dhanya, K. P. (2013). Synthesis of zinc oxide nanoparticle from hibiscus rosa-sinensis leaf extract and investigation of its antimicrobial activity. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 4, 1137–1142.

    CAS  Google Scholar 

  • Elumalai, K., & Velmurugan, S. (2015). Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica (L.). Applied Surface Science, 345, 329–336.

    Article  CAS  Google Scholar 

  • Elumalai, K., Velmurugan, S., Ravi, S., Kathiravan, V., & Ashokkumar, S. (2015). Green synthesis of zinc oxide nanoparticles using Moringa oleifera leaf extract and evaluation of its antimicrobial activity. Spectrochimica Acta Part a: Molecular and Biomolecular Spectroscopy, 143, 158–164.

    Article  CAS  Google Scholar 

  • Gunalan, S., Sivaraj, R., & Rajendran, V. (2012). Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Progress in Natural Science: Materials International, 22(6), 693–700. https://doi.org/10.1016/j.matlet.2021.131344

    Article  CAS  Google Scholar 

  • Husen, A., & Siddiqi, K. S. (2014). Phytosynthesis of nanoparticles: Concept, controversy and application. Nanoscale Research Letters, 9(229), 1–24. https://doi.org/10.1186/1556-276X-9-229

    Article  CAS  Google Scholar 

  • Husen, A. (2019). Natural product-based fabrication of zinc oxide nanoparticles and their application. In A. Husen & M. Iqbal (Eds.), Nanomaterials and plant potential (pp. 193–291). Springer International Publishing AG. https://doi.org/10.1007/978-3-030-05569-1_7

  • Husen, A. (2020). Introduction and techniques in nanomaterials formulation. In A Husen & M. Jawaid (Eds.), Nanomaterials for agriculture and forestry applications (pp. 1–14). Elsevier Inc. https://doi.org/10.1016/B978-0-12-817852-2.00001-9

  • Husen, A. (2022). Engineered nanomaterials for sustainable agricultural production, soil improvement and stress management. Elsevier Inc. https://doi.org/10.1016/C2021-0-00054-7

  • Husen, A. (2023a). Secondary metabolites based green synthesis of nanomaterials and their applications. Springer Nature Singapore Pte Ltd. https://doi.org/10.1007/978-981-99-0927-8

  • Husen, A. (2023b). Nanomaterials from agricultural and horticultural products. Springer Nature Singapore Pte Ltd. https://link.springer.com/book/9789819934348

  • Husen, A. (2023c). Nanomaterials and nanocomposites exposures to plants (Response, Interaction, Phytotoxicity and Defense Mechanisms). Springer Nature Singapore Pte Ltd. https://doi.org/10.1007/978-981-99-2419-6

  • Husen, A., Bachheti, R. K., & Bachheti, A. (2023). Current trends in green nano-emulsions (Food, Agriculture and Biomedical Sectors). Springer Nature Singapore Pte Ltd.

    Google Scholar 

  • Husen, A., Iqbal, M. (2019a). Nanomaterials and plant potential. Springer International Publishing AG. https://doi.org/10.1007/978-3-030-05569-1

  • Husen, A., Iqbal, M. (2019b). Nanomaterials and plant potential: An overview. In A. Husen, & M. Iqbal (Eds.), Nanomaterials and plant potential (pp. 3–29). Springer International Publishing AG. https://doi.org/10.1007/978-3-030-05569-1_1

  • Husen, A., & Jawaid, M. (2020). Nanomaterials for agriculture and forestry applications. Elsevier Inc. https://doi.org/10.1016/C2018-0-02349-X

  • Husen, A., & Siddiqi, K. S. (2023). Advances in smart nanomaterials and their applications. Elsevier Inc. https://doi.org/10.1016/C2021-0-02202-1

  • Husen, A., Rahman, Q. I., Iqbal, M., Yassin, M. O., Bachheti, R. K. (2019). Plant-mediated fabrication of gold nanoparticles and their applications. In Nanomaterials and plant potential (pp. 71–110). Springer. https://doi.org/10.1007/978-3-030-05569-1_3

  • Jafarirad, S., Mehrabi, M., Divband, B., & Kosari-Nasab, M. (2016). Biofabrication of zinc oxide nanoparticles using fruit extract of Rosa canina and their toxic potential against bacteria: A mechanistic approach. Materials Science and Engineering: C, 59, 296–302.

    Article  CAS  Google Scholar 

  • Khajuria, A. K., Bisht, N. S., Manhas, R. K., & Kumar, G. (2019). Callus mediated biosynthesis and antibacterial activities of zinc oxide nanoparticles from Viola canescens: An important Himalayan medicinal herb. SN Applied Sciences, 1, 1–13.

    Article  CAS  Google Scholar 

  • Khajuria, A. K., Bisht, N. S., & Kumar, G. (2017). Synthesis of zinc oxide nanoparticles using leaf extract of Viola canescens Wall. ex, Roxb. and their antimicrobial activity. Journal of Pharmacognosy and Phytochemistry, 6(5), 1301–1304.

    Google Scholar 

  • Kumar, V., & Yadav, S. K. (2009). Plant-mediated synthesis of silver and gold nanoparticles and their applications. Journal of Chemical Technology and Biotechnology, 84, 151–157.

    Article  CAS  Google Scholar 

  • Lee, H. J., Lee, G., Jang, N. R., Yun, J. H., Song, J. Y., & Kim, B. S. (2011). Biological synthesis of copper nanoparticles using plant extract. Nanotechnology, 1, 371–374.

    CAS  Google Scholar 

  • Mandal, A. K., Ghorai, S., & Husen, A. (2023). Functionalized smart nanomaterials for point-of-care testing. Springer Nature

    Google Scholar 

  • Mirzaei, H., & Darroudi, M. (2017). Zinc oxide nanoparticles: Biological synthesis and biomedical applications. Ceramics International, 43(1), 907–914.

    Article  CAS  Google Scholar 

  • Murali, M., Kalegowda, N., Gowtham, H. G., Ansari, M. A., Alomary, M. N., Alghamdi, S., & Amruthesh, K. N. (2021). Plant-mediated zinc oxide nanoparticles: Advances in the new millennium towards understanding their therapeutic role in biomedical applications. Pharmaceutics, 13(10), 1–44.

    Article  Google Scholar 

  • Nagajyothi, P. C., Cha, S. J., Yang, I. J., Sreekanth, T. V. M., Kim, K. J., & Shin, H. M. (2015). Antioxidant and anti-inflammatory activities of zinc oxide nanoparticles synthesized using Polygala tenuifolia root extract. Journal of Photochemistry and Photobiology b: Biology, 146, 10–17.

    Article  CAS  Google Scholar 

  • Naseer, M., Aslam, U., Khalid, B., & Chen, B. (2020). Green route to synthesize Zinc Oxide Nanoparticles using leaf extracts of Cassia fistula and Melia azadarach and their antibacterial potential. Scientific Reports, 10(1), 1–10.

    Article  Google Scholar 

  • Osuntokun, J., Onwudiwe, D. C., & Ebenso, E. E. (2019). Green synthesis of ZnO nanoparticles using aqueous Brassica oleracea L. var. italica and the photocatalytic activity. Green Chemistry Letters and Reviews, 12(4), 444–457.

    Google Scholar 

  • Painuli, S., Semwal, P., Bacheti, A., Bachheti, R. K., Husen, A. (2020). Nanomaterials from nonwood forest products and their applications. In: A. Husen, M. Jawaid (Eds.), Nanomaterials for agriculture and forestry applications (pp. 15–40). Elsevier. https://doi.org/10.1016/B978-0-12-817852-2.00002-0

  • Park, Y., Hong, Y. N., Weyers, A., Kim, Y. S., & Linhardt, R. J. (2011). Polysaccharides and phytochemicals: A natural reservoir for the green synthesis of gold and silver nanoparticles. IET Nanobiotechnology, 5, 69–78.

    Article  CAS  Google Scholar 

  • Ramesh, M., Anbuvannan, M., & Viruthagiri, G. (2015). Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity. Spectrochimica Acta Part a: Molecular and Biomolecular Spectroscopy, 136, 864–870.

    Article  CAS  Google Scholar 

  • Ramesh, P., Rajendran, A., & Meenakshisundaram, M. (2014). Green syntheis of zinc oxide nanoparticles using flower extract cassia auriculata. Journal of NanoScience and NanoTechnology, 2(1), 41–45.

    Google Scholar 

  • Raut, S., Thorat, P. V., & Thakre, R. (2015). Green synthesis of Zinc oxide nanoparticles using Ocimumteniflorum leaves. International Journal of Science and Research, 4(5), 1225–1228.

    Google Scholar 

  • Sabir, S., Arshad, M., & Chaudhari, S. K. (2014). Zinc oxide nanoparticles for revolutionizing agriculture: Synthesis and applications. The Scientific World Journal, 2014, 1–8.

    Article  Google Scholar 

  • Sadiq, H., Sher, F., Sehar, S., Lima, E. C., Zhang, S., Iqbal, H. M., et al. (2021). Green synthesis of ZnO nanoparticles from Syzygium Cumini leaves extract with robust photocatalysis applications. Journal of Molecular Liquids, 335, 116567.

    Google Scholar 

  • Safavinia, L., Akhgar, M. R., Tahamipour, B., & Ahmadi, S. A. (2021). Green synthesis of highly dispersed zinc oxide nanoparticles supported on silica gel matrix by Daphne oleoides extract and their antibacterial activity. Iranian Journal of Biotechnology, 19(1), 86–95.

    Google Scholar 

  • Salam, H. A., Sivaraj, R., & Venckatesh, R. (2014). Green synthesis and characterization of zinc oxide nanoparticles from Ocimumbasilicum L. var. purpurascens Benth.-Lamiaceae leaf extract. Materials Letters, 131, 16–18.

    Article  Google Scholar 

  • Salem, N. M., & Awwad, A. M. (2022). Green synthesis and characterization of ZnO nanoparticles using Solanum rantonnetii leaves aqueous extract and antifungal activity evaluation. Chemistry International, 8(1), 12–17.

    CAS  Google Scholar 

  • Sharmila, G., Muthukumaran, C., Sandiya, K., Santhiya, S., Pradeep, R. S., Kumar, N. M., & Thirumarimurugan, M. (2018). Biosynthesis, characterization, and antibacterial activity of zinc oxide nanoparticles derived from Bauhinia tomentosa leaf extract. Journal of Nanostructure in Chemistry, 8, 293–299.

    Article  CAS  Google Scholar 

  • Siddiqi, K. S., Rahman, A., & Tajuddin, H. A. (2018). Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Research Letters, 13(141), 1–13. https://doi.org/10.1186/s11671-018-2532-3

    Article  CAS  Google Scholar 

  • Soto-Robles, C. A., Luque, P. A., Gómez-Gutiérrez, C. M., Nava, O., Vilchis-Nestor, A. R., Lugo-Medina, E., & Castro-Beltrán, A. (2019). Study on the effect of the concentration of Hibiscus sabdariffa extract on the green synthesis of ZnO nanoparticles. Results in Physics, 15, 102807.

    Article  Google Scholar 

  • Taghiyari, H. R., Morrell, J. F., & Husen, A. (2023). Emerging nanomaterials (Opportunities and Challenges in Forestry Sectors). Springer Nature. https://doi.org/10.1007/978-3-031-17378-3

  • Umamaheswari, A., Prabu, S. L., John, S. A., & Puratchikody, A. (2021). Green synthesis of zinc oxide nanoparticles using leaf extracts of Raphanus sativus var. Longipinnatus and evaluation of their anticancer property in A549 cell lines. Biotechnology Reports, 29, 1–9.

    Article  Google Scholar 

  • Upadhyay, P. K., Jain, V. K., Sharma, S., Shrivastav, A. K., & Sharma, R. (2020) Green and chemically synthesized ZnO nanoparticles: A comparative study. IOP Conference Series: Materials Science and Engineering, 798(1), 012025. IOP Publishing.

    Google Scholar 

  • Varghese, E., & George, M. (2015). Green synthesis of Zinc oxide nanoparticles. International Journal of Advanced Research in Science and Engineering, 4(1), 307–314.

    Google Scholar 

  • Vaseem, M., Umar, A., & Hahn, Y. B. (2010). ZnO nanoparticles: Growth, properties, and applications. Metal Oxide Nanostructures and Their Applications, 5, 1–36.

    Google Scholar 

  • Vidya, C., Hiremath, S., Chandraprabha, M. N., Antonyraj, M. L., Gopal, I. V., Jain, A., & Bansal, K. (2013). Green synthesis of ZnO nanoparticles by Calotropis gigantea. International Journal of Current Engineering and Technology, 1, 118–120.

    Google Scholar 

  • Vijayakumar, S., Vinoj, G., Malaikozhundan, B., Shanthi, S., & Vaseeharan, B. (2015). Plectranthusamboinicus leaf extract mediated synthesis of zinc oxide nanoparticles and its control of methicillin resistant Staphylococcus aureus biofilm and blood sucking mosquito larvae. Spectrochimica Acta Part a: Molecular and Biomolecular Spectroscopy, 137, 886–891.

    Google Scholar 

  • Worku, L. A., Nigussie, Y., Bachheti, A., Bachheti, R. K., & Husen, A. (2023). Antimicrobial activities of nanomaterials. In A. Husen & K. S. Siddiqi (Eds.), Advances in smart nanomaterials and their applications (pp. 127–148). Elsevier.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuj Kandwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khajuria, A.K., Bachheti, R.K., Bachheti, A., Kandwal, A. (2024). Plant-Mediated Synthesis and Characterization of Zinc Oxide Nanoparticles. In: Bachheti, R.K., Bachheti, A., Husen, A. (eds) Metal and Metal-Oxide Based Nanomaterials. Smart Nanomaterials Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-7673-7_2

Download citation

Publish with us

Policies and ethics