Skip to main content
Log in

Effect of Thermal Radiation on Electrically Conducting Nanofluid with Slip Conditions and Heat Source Using Artificial Neural Networks

  • Published:
BioNanoScience Aims and scope Submit manuscript

A Correction to this article was published on 31 August 2023

This article has been updated

Abstract

In science and engineering, analytical and numerical methods have been utilized to compute the solutions of partial differential equations. Mathematicians are now employing artificial neural network (ANN) to investigate complex problem involving highly nonlinear partial differential equations. The aim of current study is to implement the Bayesian regularization methodology (BRM) to investigate the heat generation/absorption in thermally radiative nanofluid flow over stretched surface embedded in a porous medium with slip conditions. The flow governing equations have been obtained through boundary layer approximation theory. Reference data has been accumulated using the simplified form of equations with the help of “ND Solver” in Mathematica. Different scenarios have been created, and for each scenario, three different cases have been developed. Additionally, the reference data has been trained, tested, and validated using Bayesian regularization methodology in MATLAB. The reference data has been distributed in the following portions, training 71% and testing and validation 15% each, during simulation of each scenario. The proposed methodology’s effectiveness and accuracy have been validated through generated mean square error (MSE), error histograms (EH), proposed solutions, absolute errors (AE) comparative comparison plots, and regression plots. It has been observed that maximum absolute error 10−08 found for mass suction effect. Convergence of proposed methodology has been validated with mean square error. It has been observed that with high applied magnetization force and permeability motion of fluid declines whereas opposite behavior has been observed for non uniform inertial force. It has been noted that when slip mechanism is significant, contraction has been observed in thermal boundary layer of fluid. Present outcomes of drag coefficient and heat transfer coefficient show good agreement with already published results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig 10

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study available from the corresponding author on reasonable request.

Change history

References

  1. Choi, S. U., & Eastman, J. A. (1995). Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP-84938; CONF-951135-29), (vol. 66, pp 99–105). Argonne, IL: Argonne National Lab (ANL).

  2. Majumder, M., Chopra, N., Andrews, R., & Hinds, B. J. (2005). Enhanced flow in carbon nanotubes. Nature, 438(7064), 44–44.

    Article  Google Scholar 

  3. Saidur, R., Leong, K. Y., & Mohammed, H. A. (2011). A review on applications and challenges of nanofluids. Renewable and Sustainable Energy Reviews, 15(3), 1646–1668.

    Article  Google Scholar 

  4. Wong, K. V., & De Leon, O. (2010). Applications of nanofluids: Current and future. Advances in Mechanical Engineering, 2, 519659.

    Article  Google Scholar 

  5. Xuan, Y., & Li, Q. (2000). Heat transfer enhancement of nanofluids. International Journal of Heat and Fluid Flow, 21(1), 58–64.

    Article  Google Scholar 

  6. Choi, S. U. (2008). Nanofluids: A new field of scientific research and innovative applications. Heat Transfer Engineering, 29(5), 429–431.

    Article  Google Scholar 

  7. Hussain, S. M., Sharma, R., Mishra, M. R., & Alrashidy, S. S. (2020). Hydromagnetic dissipative and radiative graphene maxwell nanofluid flow past a stretched sheet-numerical and statistical analysis. Mathematics, 8(11), 1929.

    Article  Google Scholar 

  8. Hussain, S. M., Sharma, R., & Chamkha, A. J. (2022). Numerical and statistical explorations on the dynamics of water conveying Cu-Al2O3 hybrid nanofluid flow over an exponentially stretchable sheet with Navier’s partial slip and thermal jump conditions. Chinese Journal of Physics, 75, 120–138.

    Article  MathSciNet  Google Scholar 

  9. Sajid, T., Jamshed, W., Safdar, R., Hussain, S. M., Shahzad, F., & Bilal, M.,... & Pasha, A. A. (2022). Features and aspects of radioactive flow and slippage velocity on rotating two-phase Prandtl nanofluid with zero mass fluxing and convective constraints. International Communications in Heat and Mass Transfer, 136, 106180.

    Article  Google Scholar 

  10. Shahzad, F., Jamshed, W., Safdar, R., Hussain, S. M., Nasir, N. A. A. M., Dhange, M., et al. (2022). Thermal analysis characterisation of solar-powered ship using Oldroyd hybrid nanofluids in parabolic trough solar collector: An optimal thermal application. Nanotechnology Reviews, 11(1), 2015–2037.

    Article  Google Scholar 

  11. Parvin, S., Isa, S. S. P. M., Al-Duais, F. S., Hussain, S. M., Jamshed, W., Safdar, R., & Eid, M. R. (2022). The flow, thermal and mass properties of Soret-Dufour model of magnetized Maxwell nanofluid flow over a shrinkage inclined surface. PLoS One, 17(4), e0267148.

    Article  Google Scholar 

  12. El Din, S. M., Darvesh, A., Ayub, A., Sajid, T., Jamshed, W., Eid, M. R., et al. (2022). Quadratic multiple regression model and spectral relaxation approach for carreau nanofluid inclined magnetized dipole along stagnation point geometry. Scientific Reports, 12(1), 17337.

    Article  Google Scholar 

  13. Arshad, M., & Hassan, A. (2022). A numerical study on the hybrid nanofluid flow between a permeable rotating system. The European Physical Journal Plus, 137(10), 1126.

    Article  Google Scholar 

  14. Hussain, S. M. (2022). Thermal-enhanced hybrid of copper–zirconium dioxide/ethylene glycol nanofluid flowing in the solar collector of water-pump application. Waves in Random and Complex Media, 1–28.

  15. Hassan, A., Haider, Q., Alsubaie, N., Alharbi, F. M., Alhushaybari, A., & Galal, A. M. (2022). Investigation of mixed convection in spinning nanofluid over rotating cone using artificial neural networks and BVP-4C technique. Mathematics, 10(24), 4833.

    Article  Google Scholar 

  16. Hussain, S. M. (2022). Dynamics of radiative Williamson hybrid nanofluid with entropy generation: Significance in solar aircraft. Scientific Reports, 12(1), 8916.

    Article  Google Scholar 

  17. Shah, S. A. G. A., Hassan, A., Alsubaie, N., Alhushaybari, A., Alharbi, F. M., Galal, A., & M.,... & Bejinariu, C. (2022). Convective heat transfer in magneto-hydrodynamic Carreau fluid with temperature dependent viscosity and thermal conductivity. Nanomaterials, 12(22), 4084.

    Article  Google Scholar 

  18. Hussain, S. M. (2022). Irreversibility analysis of time-dependent magnetically driven flow of Sutterby hybrid nanofluid: A thermal mathematical model. Waves in Random and Complex Media, 1–33.

  19. Farooq, U., Hassan, A., Fatima, N., Imran, M., Alqurashi, M. S., Noreen, S., et al. (2023). A computational fluid dynamics analysis on Fe3O4–H2O based nanofluid axisymmetric flow over a rotating disk with heat transfer enhancement. Scientific Reports, 13(1), 4679.

    Article  Google Scholar 

  20. Hussain, S. M. (2023). Numerical assessment of a sutterby hybrid nanofluid over a stretching sheet with a particle shape factor. Waves in Random and Complex Media, 1–17.

  21. Bhattacharyya, A., Sharma, R., Hussain, S. M., Chamkha, A. J., & Mamatha, E. (2022). A numerical and statistical approach to capture the flow characteristics of Maxwell hybrid nanofluid containing copper and graphene nanoparticles. Chinese Journal of Physics, 77, 1278–1290.

    Article  MathSciNet  Google Scholar 

  22. Hussain, S. M. (2022). Dynamics of ethylene glycol-based graphene and molybdenum disulfide hybrid nanofluid over a stretchable surface with slip conditions. Scientific Reports, 12(1), 1751.

    Article  Google Scholar 

  23. Hussain, S. M., Mishra, M. R., Seth, G. S., & Chamkha, A. J. (2022). Dynamics of heat absorbing and radiative hydromagnetic nanofluids through a stretching surface with chemical reaction and viscous dissipation. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 1–11.

  24. Arshad, M., Hussain, A., Hassan, A., Khan, I., Badran, M., Mehrez, S., et al. (2022). Heat transfer analysis of nanostructured material flow over an exponentially stretching surface: A comparative study. Nanomaterials, 12(7), 1204.

    Article  Google Scholar 

  25. Hassan, A., Hussain, A., Arshad, M., Awrejcewicz, J., Pawlowski, W., Alharbi, F. M., & Karamti, H. (2022). Heat and mass transport analysis of MHD rotating hybrid nanofluids conveying silver and molybdenum di-sulfide nano-particles under effect of linear and non-linear radiation. Energies, 15(17), 6269.

    Article  Google Scholar 

  26. Devi, S. A., & Devi, S. S. U. (2016). Numerical investigation of hydromagnetic hybrid Cu–Al2O3/water nanofluid flow over a permeable stretching sheet with suction. International Journal of Nonlinear Sciences and Numerical Simulation, 17(5), 249–257.

    Article  Google Scholar 

  27. Hassan, A., Hussain, A., Arshad, M., Gouadria, S., Awrejcewicz, J., Galal, A. M., et al. (2022). Insight into the significance of viscous dissipation and heat generation/absorption in magneto-hydrodynamic radiative casson fluid flow with first-order chemical reaction. Frontiers in Physics, 10, 605.

  28. Prasannakumara, B. C. (2021). Numerical simulation of heat transport in Maxwell nanofluid flow over a stretching sheet considering magnetic dipole effect. Partial Differential Equations in Applied Mathematics, 4, 100064.

    Article  Google Scholar 

  29. Hayat, T., Khan, W. A., Abbas, S. Z., Nadeem, S., & Ahmad, S. (2020). Impact of induced magnetic field on second-grade nanofluid flow past a convectively heated stretching sheet. Applied Nanoscience, 10(8), 3001–3009.

    Article  Google Scholar 

  30. Arshad, M., Hussain, A., Hassan, A., Shah, S. A. G. A., Elkotb, M. A., Gouadria, S., et al. (2022). Heat and mass transfer analysis above an unsteady infinite porous surface with chemical reaction. Case Studies in Thermal Engineering, 36, 102140.

    Article  Google Scholar 

  31. Raza, J., Mebarek-Oudina, F., & Mahanthesh, B. (2019). Magnetohydrodynamic flow of nano Williamson fluid generated by stretching plate with multiple slips. Multidiscipline Modeling in Materials and Structures, 15(5), 71–894.

    Google Scholar 

  32. Chabani, I., Mebarek-Oudina, F., & Ismail, A. A. I. (2022). MHD flow of a hybrid nano-fluid in a triangular enclosure with zigzags and an elliptic obstacle. Micromachines, 13(2), 224.

    Article  Google Scholar 

  33. Mebarek-Oudina, F., Redouane, F., & Rajashekhar, C. (2020). Convection heat transfer of MgO-Ag/water magneto-hybrid nanoliquid flow into a special porous enclosure. Algerian Journal of Renewable Energy and Sustainable Development, 2(2), 84–95.

    Article  Google Scholar 

  34. Khan, W. A., Khan, Z. H., & Rahi, M. (2014). Fluid flow and heat transfer of carbon nanotubes along a flat plate with Navier slip boundary. Applied Nanoscience, 4(5), 633–641.

    Article  Google Scholar 

  35. Haq, R. U., Nadeem, S., Khan, Z. H., & Noor, N. F. M. (2015). Convective heat transfer in MHD slip flow over a stretching surface in the presence of carbon nanotubes. Physica B: Condensed Matter, 457, 40–47.

    Article  Google Scholar 

  36. Akbar, N. S., & Butt, A. W. (2015). Carbon nanotubes analysis for the peristaltic flow in curved channel with heat transfer. Applied Mathematics and Computation, 259, 231–241.

    Article  MathSciNet  MATH  Google Scholar 

  37. Hayat, T., Hussain, Z., Alsaedi, A., & Ahmad, B. (2016). Heterogeneous-homogeneous reactions and melting heat transfer effects in flow with carbon nanotubes. Journal of Molecular Liquids, 220, 200–207.

    Article  Google Scholar 

  38. Imtiaz, M., Hayat, T., Alsaedi, A., & Ahmad, B. (2016). Convective flow of carbon nanotubes between rotating stretchable disks with thermal radiation effects. International journal of heat and mass transfer, 101, 948–957.

    Article  Google Scholar 

  39. Shah, Z., Bonyah, E., Islam, S., & Gul, T. (2019). Impact of thermal radiation on electrical MHD rotating flow of carbon nanotubes over a stretching sheet. AIP Advances, 9(1), 015115.

    Article  Google Scholar 

  40. Hussain, A., Hassan, A., Al Mdallal, Q., Ahmad, H., Rehman, A., Altanji, M., & Arshad, M. (2021). Heat transport investigation of magneto-hydrodynamics (SWCNT-MWCNT) hybrid nanofluid under the thermal radiation regime. Case Studies in Thermal Engineering, 27, 101244.

    Article  Google Scholar 

  41. Hussain, A., Haider, Q., Rehman, A., Ahmad, H., Baili, J., Aljahdaly, N. H., & Hassan, A. (2021). A thermal conductivity model for hybrid heat and mass transfer investigation of single and multi-wall carbon nano-tubes flow induced by a spinning body. Case Studies in Thermal Engineering, 28, 101449.

    Article  Google Scholar 

  42. Ullah, H., Ullah, K., Raja, M. A. Z., Shoaib, M., Nisar, K. S., Islam, S., et al. (2023). Numerical treatment of squeezed MHD Jeffrey fluid flow with Cattaneo Chrisstov heat flux in a rotating frame using Levnberg-Marquard method. Alexandria Engineering Journal, 66, 1031–1050.

    Article  Google Scholar 

  43. Khan, N. A., Laouini, G., Alshammari, F. S., Khalid, M., & Aamir, N. (2023). Supervised machine learning for jamming transition in traffic flow with fluctuations in acceleration and braking. Computers and Electrical Engineering, 109, 108740.

    Article  Google Scholar 

  44. Khan, N. A., Sulaiman, M., & Alshammari, F. S. (2022). Heat transfer analysis of an inclined longitudinal porous fin of trapezoidal, rectangular and dovetail profiles using cascade neural networks. Structural and Multidisciplinary Optimization, 65(9), 251.

    Article  Google Scholar 

  45. Khan, N. A., Sulaiman, M., Aljohani, A. J., & Bakar, M. A. (2022). Mathematical models of CBSC over wireless channels and their analysis by using the LeNN-WOA-NM algorithm. Engineering Applications of Artificial Intelligence, 107, 104537.

    Article  Google Scholar 

  46. Khan, N. A., Sulaiman, M., Tavera Romero, C. A., & Alarfaj, F. K. (2021). Theoretical analysis on absorption of carbon dioxide (CO2) into solutions of phenyl glycidyl ether (PGE) using nonlinear autoregressive exogenous neural networks. Molecules, 26(19), 6041.

    Article  Google Scholar 

  47. Sulaiman, M., & Khan, N. A. (2023). Predictive modeling of oil and water saturation during secondary recovery with supervised learning. Physics of Fluids, 35(6), 064110.

  48. Ahmad Khan, N., & Sulaiman, M. (2022). Heat transfer and thermal conductivity of magneto micropolar fluid with thermal non-equilibrium condition passing through the vertical porous medium. Waves in Random and Complex Media, 1–25.

  49. Khan, N. A., Sulaiman, M., & Alshammari, F. S. (2022). Analysis of heat transmission in convective, radiative and moving rod with thermal conductivity using meta-heuristic-driven soft computing technique. Structural and Multidisciplinary Optimization, 65(11), 317.

    Article  Google Scholar 

  50. Khan, M. I., Shoaib, M., Zubair, G., Kumar, R. N., Prasannakumara, B. C., Mousa, A. A. A., et al. (2023). Neural artificial networking for nonlinear Darcy–Forchheimer nanofluidic slip flow. Applied Nanoscience, 13(6), 3767–3786.

    Article  Google Scholar 

  51. Butt, Z. I., Ahmad, I., & Shoaib, M. (2022). Design of inverse multiquadric radial basis neural networks for the dynamical analysis of wire coating problem with Oldroyd 8-constant fluid. AIP Advances, 12(10), 105306.

  52. Esfe, M. H., Kamyab, M. H., & Toghraie, D. (2022). Statistical review of studies on the estimation of thermophysical properties of nanofluids using artificial neural network (ANN). Powder Technology, 400, 117210.

    Article  Google Scholar 

  53. Ahmadloo, E., & Azizi, S. (2016). Prediction of thermal conductivity of various nanofluids using artificial neural network. International Communications in Heat and Mass Transfer, 74, 69–75.

    Article  Google Scholar 

  54. Khan, Z., Zuhra, S., Islam, S., Raja, M. A. Z., & Ali, A. (2023). Modeling and simulation of Maxwell nanofluid flows in the presence of Lorentz and Darcy–Forchheimer forces: Toward a new approach on Buongiorno’s model using artificial neural network (ANN). The European Physical Journal Plus, 138(1), 107.

    Article  Google Scholar 

  55. Rama Devi, S. V. V., & Gnaneswara Reddy, M. (2022). Parametric analysis of MHD flow of nanofluid in stretching sheet under chemical sensitivity and thermal radiation. Heat Transfer, 51(1), 948–975.

    Article  Google Scholar 

  56. Çolak, A. B., Shafiq, A., & Sindhu, T. N. (2022). Modeling of Darcy–Forchheimer bioconvective Powell Eyring nanofluid with artificial neural network. Chinese Journal of Physics, 77, 2435–2453.

    Article  MathSciNet  Google Scholar 

  57. Botmart, T., Sabir, Z., Raja, M. A. Z., Sadat, R., & Ali, M. R. (2023). Stochastic procedures to solve the nonlinear mass and heat transfer model of Williamson nanofluid past over a stretching sheet. Annals of Nuclear Energy, 181, 109564.

    Article  Google Scholar 

  58. Raja, M. A. Z., Shoaib, M., Hussain, S., Nisar, K. S., & Islam, S. (2022). Computational intelligence of Levenberg-Marquardt backpropagation neural networks to study thermal radiation and Hall effects on boundary layer flow past a stretching sheet. International Communications in Heat and Mass Transfer, 130, 105799.

    Article  Google Scholar 

  59. Tafarroj, M. M., Mahian, O., Kasaeian, A., Sakamatapan, K., Dalkilic, A. S., & Wongwises, S. (2017). Artificial neural network modeling of nanofluid flow in a microchannel heat sink using experimental data. International Communications in Heat and Mass Transfer, 86, 25–31.

    Article  Google Scholar 

  60. Shafiq, A., Çolak, A. B., & Naz Sindhu, T. (2021). Designing artificial neural network of nanoparticle diameter and solid–fluid interfacial layer on single-walled carbon nanotubes/ethylene glycol nanofluid flow on thin slendering needles. International Journal for Numerical Methods in Fluids, 93(12), 3384–3404.

    Article  MathSciNet  Google Scholar 

  61. Shoaib, M., Khan, R. A., Ullah, H., Nisar, K. S., Raja, M. A. Z., Islam, S., et al. (2021). Heat transfer impacts on Maxwell nanofluid flow over a vertical moving surface with MHD using stochastic numerical technique via artificial neural networks. Coatings, 11(12), 1483.

    Article  Google Scholar 

  62. Bahiraei, M., & Majd, S. M. (2016). Prediction of entropy generation for nanofluid flow through a triangular minichannel using neural network. Advanced Powder Technology, 27(2), 673–683.

    Article  Google Scholar 

  63. He, X., Sidi, M. O., Ahammad, N. A., Elkotb, M. A., Elattar, S., & Algelany, A. M. (2022). Artificial neural network joined with lattice boltzmann method to study the effects of mhd on the slip velocity of fmwnt/water nanofluid flow inside a microchannel. Engineering Analysis with Boundary Elements, 143, 95–108.

    Article  MathSciNet  MATH  Google Scholar 

  64. Safaei, M. R., Hajizadeh, A., Afrand, M., Qi, C., Yarmand, H., & Zulkifli, N. W. B. M. (2019). Evaluating the effect of temperature and concentration on the thermal conductivity of ZnO-TiO2/EG hybrid nanofluid using artificial neural network and curve fitting on experimental data. Physica A: Statistical Mechanics and its Applications, 519, 209–216.

    Article  Google Scholar 

  65. Dey, P., Sarkar, A., & Das, A. K. (2015). Prediction of unsteady mixed convection over circular cylinder in the presence of nanofluid-A comparative study of ANN and GEP. Journal of Naval Architecture and Marine Engineering, 12(1), 57–71.

    Article  Google Scholar 

  66. Hassan, A., Alsubaie, N., Alharbi, F. M., Alhushaybari, A., & Galal, A. M. (2023). Scrutinization of Stefan suction/blowing on thermal slip flow of ethylene glycol/water based hybrid ferro-fluid with nano-particles shape effect and partial slip. Journal of Magnetism and Magnetic Materials, 565, 170276.

    Article  Google Scholar 

  67. Bala Anki Reddy, P., Jakeer, S., Thameem Basha, H., Reddisekhar Reddy, S. R., & Mahesh Kumar, T. (2022). Multi-layer artificial neural network modeling of entropy generation on MHD stagnation point flow of Cross-nanofluid. Waves in Random and Complex Media, 1–28.

  68. Toghraie, D., Sina, N., Jolfaei, N. A., Hajian, M., & Afrand, M. (2019). Designing an artificial neural network (ANN) to predict the viscosity of silver/ethylene glycol nanofluid at different temperatures and volume fraction of nanoparticles. Physica A: Statistical Mechanics and its Applications, 534, 122142.

    Article  Google Scholar 

Download references

Acknowledgements

Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R236), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

Qusain Haider: conceptualization, formal analysis, and data curation. Ali Hassan: conceptualization, writing original draft, writing—review and editing, and formal analysis. Fahima Hajjej: methodology, source, supervisions, and validation, Fahad M. Alharbi: sources and validation. Abdulkafi Mohammed Saeed: re-validation, investigation, and sources, Mubashar Arsahd: sources and formal analysis

Corresponding author

Correspondence to Ali Hassan.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

The authors declare no competing interests.

Research Involving Humans and Animals

Not applicable.

Informed Consent

All the authors have give their consent to publish this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haider, Q., Hassan, A., Hajjej, F. et al. Effect of Thermal Radiation on Electrically Conducting Nanofluid with Slip Conditions and Heat Source Using Artificial Neural Networks. BioNanoSci. 13, 2483–2506 (2023). https://doi.org/10.1007/s12668-023-01171-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-023-01171-5

Keywords

Navigation