Skip to main content
Log in

Modeling of Soret and Dufour’s Convective Heat Transfer in Nanofluid Flow Through a Moving Needle with Artificial Neural Network

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, forced convective heat and mass transfer of a nanofluid using the Buongiorno model and moving radially through a thin needle has been analyzed using the Runge–Kutta fourth-order technique with shooting approach. In order to analyze the thermo-diffusion and diffusion-thermoeffects on the flow, Dufour and Soret effects have been investigated and the mass transport phenomenon has also been investigated by activation energy. Partial differential systems of the flow model have been obtained with the boundary-layer approach and modified by using the appropriate transformations to be connected to nonlinear ordinary differential systems. The Runge–Kutta technique is the most popular methodology for obtaining the numerical results to solve the differential equations. It can evaluate higher-order numerical solutions and provide answers that are as close to correct solution. Therefore, using the Runge–Kutta fourth-order strategy with a shooting strategy, a data set has been created for different flow scenarios of the interesting and comprehensive model for nanofluid (Boungiorno’s model), which incorporates Brownian motion and thermophoresis. Using this data set, an artificial neural network model has been developed to predict skin friction coefficient, Sherwood number and Nusselt number values. Seventy percentage of the data used in ANN models developed with different numbers of datasets have been used for training, \(15\%\) for validation and \( 15\%\) for testing. The results show that ANN models can predict skin friction coefficient, Sherwood number and Nusselt number values with error rates of \(-\,0.33\%\), \(0.08\%\) and \(0.03\%\), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

\(\tilde{T}\) :

Nanofluid’s temperature (K)

\(\tilde{T}_{\tilde{\mathrm{m}}}\) :

Fluid mean temperature

\(\tilde{K}\) :

Fluid’s thermal conductivity (kg m s\(^{-3}\) K\(^{-1}\))

\(\tilde{H}\) :

Concentration of nanofluid (mol m\(^{-3}\))

\(\tilde{\sigma }^{*}\) :

Stefan–Boltzmann constant

\({\tilde{v}}_{1},\tilde{u}_{1},\) :

Velocity components (m s\(^{-1}\))

\(\tilde{D}_{\tilde{\mathrm{m}}}\) :

Mass diffusivity coefficient (m \(^{2}\) s\(^{-1}\))

\(\left( \tilde{x}_{1},\tilde{r}_{1}\right) \) :

Coordinate system

\(\tilde{u}_{\infty }\) :

Free stream velocity

\(\tilde{q}_\mathrm{r}\) :

Radiative flux

\(\tilde{H}_{\infty }\) :

Ambient concentration (mol  m\(^{-3}\))

\(N_\mathrm{b}\) :

Brownian motion parameter

\(k_{1}^{*}\) :

Mean absorption coefficient

\(P_{1}\) :

Prandtl number

\(M_{1}\) :

Magnetic parameter

\(N_\mathrm{t}\) :

Thermophoresis parameter

\(R_\mathrm{a}\) :

Radiation parameter

\(\alpha _{1}\) :

Relaxation time

\(\alpha _{2}\) :

Temperature difference ratio

\(\left( w,b\right) \) :

Weights and bias, respectively

\(B_{1}\) :

Biot number

\(\tilde{T}_{n}\) :

Wall’s temperature (K)

\(\breve{D}_{\breve{\mathrm{B}} } \) :

Brownian diffusivity coefficient (m\(^{2}\) s\(^{-1}\))

\(\tilde{D}_{\check{\mathrm{T}}}\) :

Thermophoretic diffusivity coefficient (m\(^{2}\) s\(^{-1}\))

\(q_\mathrm{r}\) :

Radiative flux (W m\(^{-2}\))

\(S_\mathrm{c}\) :

Schmidt number

\(\breve{T}_{\infty }\) :

Ambient fluid’s temperature (K)

\( \tilde{H}_\mathrm{n}\) :

Wall’s nanoparticle volume fraction (mol m\(^{-3}\))

\(\tilde{\tau }^{*}\) :

Fraction of effective heat capacity

\(\tilde{u}_\mathrm{n}\) :

Needle’s velocity

\(\bar{U}\) :

Composite velocity between needle and free stream

\(S_\mathrm{r}\) :

Soret number

\(\tilde{K}_{\tilde{\mathrm{T}}}\) :

Thermal diffusion ratio

\(\lambda _{1}\) :

Velocity ratio number

\(\tilde{c}_\mathrm{s}\) :

Nanoparticle concentration susceptibility (kg\(^{-1}\) J K\(^{-1}\))

\(\tilde{c}_\mathrm{p}\) :

Heat at uniform pressure (kg\(^{-1}\) J K\(^{-1}\))

\(E_{2}\) :

Activation energy

\(D_\mathrm{u}\) :

Dufour number

f :

Transfer/activation function

GMDH:

Group method of data handling

\(\Psi \) :

Stream function

\(\phi \) :

Dimensionless concentration

\(\sigma _{0}^{*}\) :

Stefan–Boltzmann constant

\(\tilde{\alpha }\) :

Fluid thermal diffusivity (m s\(^{-1}\))

\(\tilde{\sigma }^{*}\) :

Coefficient of mean adsorption

\(\sigma \) :

Electrical conductivity (\(\Omega ^{-1}\) m\(^{-1}\))

\(\xi \) :

Similarity variable

\(\theta \) :

Dimensionless temperature

\(\rho _{0}\) :

Density of fluid (kg m\(^{-3}\))

\(\nu \) :

Dynamic viscosity (m\(^{2}\) s\(^{-1}\))

\(\mu \) :

Dynamic viscosity of base fluid (kg m\(^{-1}\) s\(^{-1}\))

References

  1. Buongiorno, J.: Convective transport in nanofluids. J. Heat Transf. 128, 240–250 (2006). https://doi.org/10.1115/1.2150834

    Article  Google Scholar 

  2. Kakac, S.; Pramuanjaroenkij, A.: Review of convective heat transfer enhancement with nanofluids. Int. J. Heat Mass Transf. 52, 3187–3196 (2009). https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.006

    Article  MATH  Google Scholar 

  3. Marga, S.E.B.; Palm, S.J.; Nguyen, C.T.; Roy, G.; Galanis, N.: Heat transfer enhancement by using nanofluids in forced convection flows. Int. J. Heat Fluid Flow 26, 530–546 (2005). https://doi.org/10.1016/j.ijheatfluidflow.2005.02.004

    Article  Google Scholar 

  4. Saidur, R.; Leong, K.Y.; Mohammad, H.A.: A review on applications and challenges of nanofluids. Renew. Sustain. Energy Rev. 15, 1646–1668 (2011). https://doi.org/10.1016/j.rser.2010.11.035

    Article  Google Scholar 

  5. Huminic, G.; Huminic, A.: Application of nanofluids in heat exchangers: a review. Renew. Sustain. Energy Rev. 16, 5625–5638 (2012). https://doi.org/10.1016/j.rser.2012.05.023

    Article  MATH  Google Scholar 

  6. Sajid, M.U.; Ali, H.M.: Recent advances in application of nanofluids in heat transfer devices: a critical review. Renew. Sustain. Energy Rev. 103, 556–592 (2019). https://doi.org/10.1016/j.rser.2018.12.057

    Article  Google Scholar 

  7. Ramezanizadeh, M.; Ahmadi, M.H.; Nazari, M.A.; Sadeghzadeh, M.; Chen, L.: A review on the utilized machine learning approaches for modeling the dynamic viscosity of nanofluids. Renew. Sustain. Energy Rev. 114, 109345 (2019). https://doi.org/10.1016/j.rser.2019.109345

    Article  Google Scholar 

  8. Komeilibirjandi, A.; Raffiee, A.H.; Maleki, A.; Nazari, M.A.; Shadloo, M.S.: Thermal conductivity prediction of nanofluids containing CuO nanoparticles by using correlation and artificial neural network. J. Therm. Anal. Calorim. 139, 2679–2689 (2020). https://doi.org/10.1007/s10973-019-08838-w

    Article  Google Scholar 

  9. Maleki, A.; Elahi, M.; Assad, M.E.H.; Nazari, M.A.; Shadloo, M.S.; Nabipour, N.: Thermal conductivity modeling of nanofluids with ZnO particles by using approaches based on artificial neural network and MARS. J. Therm. Anal. Calorim. (2020). https://doi.org/10.1007/s10973-020-09373-9

    Article  Google Scholar 

  10. Khan, W.A.; Pop, I.: Boundary-layer flow of a nanofluid past a stretching sheet. Int. J. Heat Mass Transf. 53, 2477–2483 (2010). https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.032

    Article  MATH  Google Scholar 

  11. Kuznetsov, A.V.; Nield, D.A.: Natural convective boundary layer flow of a nanofluid past a vertical plate. Int. J. Therm. Sci. 49, 243–247 (2010). https://doi.org/10.1016/j.ijthermalsci.2009.07.015

    Article  Google Scholar 

  12. Bachok, N.; Ishak, A.; Pop, I.: The boundary layers of an unsteady stagnation-point flow in a nanofluid. Int. J. Heat Mass Transf. 55, 6499–6505 (2012). https://doi.org/10.1016/j.ijheatmasstransfer.2012.06.050

    Article  Google Scholar 

  13. Shafiq, A.; Sindhu, T.N.; Khalique, C.M.: Numerical investigation and sensitivity analysis on bioconvective tangent hyperbolic nanofluid flow towards stretching surface by response surface methodology. Alex. Eng. J. 59(6), 4533–4548 (2020)

    Article  Google Scholar 

  14. Rasool,G.; Shafiq, A.: Numerical exploration of the features of thermally enhanced chemically reactive radiative Powell–Eyring nanofluid flow via Darcy medium over non-linearly stretching surface affected by a transverse magnetic field and convective boundary conditions. Appl. Nanosci. 1–18 (2020)

  15. Rasool, G.; Shafiq, A.: Darcy-Forchheimer relation in magnetohydrodynamic Jeffrey nanofluid flow over stretching surface. Discrete Continu. Dyn. Syst. S 14, 2497 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Shafiq, A.; Khalique, C.M.: Lie group analysis of upper convected Maxwell fluid flow along stretching surface. Alex. Eng. J. 59(4), 2533–2541 (2020)

    Article  Google Scholar 

  17. Shafiq, A.; Sindhu, T.N.; Hammouch, Z.: Characteristics of homogeneous heterogeneous reaction on flow of Walters’ B liquid under the statistical paradigm. In: International workshop of Mathematical Modelling, Applied Analysis and Computation, Springer, Singapore, pp. 295–311 (2018)

  18. Shafiq, A.; Sindhu, T.N.: Statistical study of hydromagnetic boundary layer flow of Williamson fluid regarding a radiative surface. Results Phys. 7, 3059–3067 (2017)

    Article  Google Scholar 

  19. Rana, P.; Dhanai, R.; Kumar, L.: MHD slip flow and heat transfer of Al2O3- water nanofluid over a horizontal shrinking cylinder using Buongiorno’s model: Effect of nanolayer and nanoparticle diameter. Adv. Powder Technol. 28, 1727–1738 (2017)

    Article  Google Scholar 

  20. Rasool, G.; Shafiq, A.; Khan, I.; Baleanu, D.; Nisar, K.S.; Shahzadi, G.: Entropy generation and consequences of MHD in Darcy–Forchheimer nanofluid flow bounded by non-linearly stretching surface. Symmetry 12(4), 652 (2020)

    Article  Google Scholar 

  21. Ferdows, M.; Shamshuddin, M.; Salawu, S.O.; et al.: Numerical simulation for the steady nanofluid boundary layer flow over a moving plate with suction and heat generation. SN Appl. Sci. 3, 264 (2021). https://doi.org/10.1007/s42452-021-04224-0

    Article  Google Scholar 

  22. Khan, U.; Shafiq, A.; Zaib, A.; Baleanu, D.: Hybrid nanofluid on mixed convective radiative flow from an irregular variably thick moving surface with convex and concave effects. Case Stud. Thermal Eng. 21, 100660 (2020)

    Article  Google Scholar 

  23. Shafiq, A.; Rasool, G.; Khalique, C.M.: Significance of thermal slip and convective boundary conditions in three dimensional rotating Darcy–Forchheimer nanofluid flow. Symmetry 12(5), 741 (2020)

    Article  Google Scholar 

  24. Gul, T.; Kashifullah, B.M.; et al.: Hybrid nanofluid flow within the conical gap between the cone and the surface of a rotating disk. Sci. Rep. 11, 1180 (2021). https://doi.org/10.1038/s41598-020-80750-y

    Article  Google Scholar 

  25. Ghulam, R.; Zhang, T.; Chamkha, A.J.; Shafiq, A.; Tlili, I.; Shahzadi, G.: Entropy generation and consequences of binary chemical reaction on MHD Darcy-Forchheimer Williamson nanofluid flow over non-linearly stretching surface. Entropy 22(1), 18 (2020)

    MathSciNet  Google Scholar 

  26. Ma, T.; Guo, Z.; Lin, M.; Wang, Q.: Recent trends on nanofluid heat transfer machine learning research applied to renewable energy. Renew. Sustain. Energy Rev. 138, 110494 (2021). https://doi.org/10.1016/j.rser.2020.110494

    Article  Google Scholar 

  27. Chu, Y.M.; Khan, U.; Shafiq, A.; Zaib, A.: Numerical simulations of time-dependent micro-rotation blood flow induced by a curved moving surface through conduction of gold particles with non-uniform heat sink/source. Arab. J. Sci. Eng. 46(3), 2413–2427 (2021)

    Article  Google Scholar 

  28. Kumar, R.A.; Kavitha, M.; Kumar, P.M.; Seshadri, S.A.: Numerical study of graphene-platinum hybrid nanofluid in microchannel for electronics cooling. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. (2021). https://doi.org/10.1177/0954406220987261

  29. Alqarni, M.S.; Waqas, H.; Imran, M.; Alghamdi, M.; Muhammad, T.: Thermal transport of bio-convection flow of micropolar nanofluid with motile microorganisms and velocity slip effects. Phys. Scr. 96, 015220 (2021)

    Article  Google Scholar 

  30. Lee, L.L.: Boundary layer over a thin needle. Phys. Fluids 10, 1820–1822 (1967). https://doi.org/10.1063/1.1762194

    Article  Google Scholar 

  31. Ahmad, S.; Arifin, N.M.; Nazar, R.; Pop, I.: Mixed convection boundary layer flow along vertical thin needles: assisting and opposing flows. Int. Commun. Heat Mass Trans. 35, 157–162 (2008). https://doi.org/10.1016/j.icheatmasstransfer.2007.07.005

    Article  MATH  Google Scholar 

  32. Grosan, T.; Pop, I.: Forced convection boundary layer flow past non isothermal thin needles in nanofluids. J. Heat Trans. 133, 054503 (2011). https://doi.org/10.1115/1.4003059

    Article  Google Scholar 

  33. Ahmad, R.; Mustafa, M.S.: Hina, Buongiorno’s model for fluid flow around a moving thin needle in a flowing nanofluid: a numerical study. Chin. J. Phys. 55, 1264–1274 (2017). https://doi.org/10.1016/j.cjph.2017.07.004

    Article  Google Scholar 

  34. Salleh, S.N.A.; Bachok, N.; Arifin, N.M.; Ali, F.M.: Numerical analysis of boundary layer flow adjacent to a thin needle in nanofluid with the presence of heat source and chemical reaction. Symmetry 11, 543 (2019). https://doi.org/10.3390/sym11040543

    Article  MATH  Google Scholar 

  35. Salleh, S.N.A.; Bachok, N.; Arifin, N.M.; Ali, F.M.: A stability analysis of solutions on boundary layer flow past a moving thin needle in a nanofluid with slip effect. ASM Sci. J. 12, 60–70 (2019)

    Google Scholar 

  36. Waini, I.; Ishak, A.; Pop, I.: On the stability of the flow and heat transfer over a moving thin needle with prescribed surface heat flux. Chin. J. Phys. 60, 651–658 (2019). https://doi.org/10.1016/j.cjph.2019.06.008

    Article  MathSciNet  Google Scholar 

  37. Salleh, S.N.A.; Bachok, N.; Arifin, N.M.; Ali, F.M.: Magnetic field effect on nanofluid flow and heat transfer past a moving horizontal thin needle with stability analysis. In: Embracing Mathematical Diversity, UPM Press, Malaysia, pp. 182–193 (2019)

  38. Mortimer, R.G.; Eyring, H.: Elementary transition state theory of the Soret and Dufour effects. Proc. Natl. Acad. Sci. USA 77, 1728–1731 (1980)

    Article  Google Scholar 

  39. Benano-Melly, L.B.; Caltagirone, J.P.; Faissat, B.; Montel, F.; Costeseque, P.: Modelling Soret coefficient measurement experiments in porous media considering thermal and solutal convection. Int. J. Heat Mass Transf. 44, 1285–1297 (2001). https://doi.org/10.1016/S0017-9310(00)00183-6

    Article  MATH  Google Scholar 

  40. Postelnicu, A.: Influence of chemical reaction on heat and mass transfer by natural convection from vertical surfaces in porous media considering Soret and Dufour effects. Heat Mass Transf. 43, 595–602 (2007). https://doi.org/10.1007/s00231-006-0132-8

    Article  Google Scholar 

  41. Postelnicu, A.: Heat and mass transfer by natural convection at a stagnation point in a porous medium considering Soret and Dufour effects. Heat Mass Transf. 46, 831–840 (2010). https://doi.org/10.1007/s00231-010-0633-3

    Article  Google Scholar 

  42. Rasool, G.; Shafiq, A.; Baleanu, D.: Consequences of Soret-Dufour effects, thermal radiation, and binary chemical reaction on Darcy Forchheimer flow of nanofluids. Symmetry 12(9), 1421 (2020)

    Article  Google Scholar 

  43. Shojaei, A.; Amiri, A.J.; Ardahaie, S.S.; Hosseinzadeh, K.; Ganji, D.D.: Hydrothermal analysis of Non-Newtonian second grade fluid flow on radiative stretching cylinder with Soret and Dufour effects. Case Stud. Therm. Eng. 13, 100384 (2019). https://doi.org/10.1016/j.csite.2018.100384

    Article  Google Scholar 

  44. Sardar, H.; Ahmad, L.; Khan, M.; Alshomrani, A.S.: Investigation of mixed convection flow of Carreau nanofluid over a wedge in the presence of Soret and Dufour effects. Int. J. Heat and Mass Transf. 137, 809–822 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.132

    Article  Google Scholar 

  45. Ariana, M.A.; Vaferi, B.; Karimi, G.: Prediction of thermal conductivity of alumina water-based nanofluids by artificial neural networks. Powder Technol. 278, 1–10 (2015)

    Article  Google Scholar 

  46. Çolak, A.B.: A novel comparative analysis between the experimental and numeric methods on viscosity of zirconium oxide nanofluid: developing optimal artificial neural network and new mathematical model. Powder Technol. 381, 338–351 (2021)

    Article  Google Scholar 

  47. Feng, Q.; Zhang, J.; Zhang, X.; Wen, S.: Proximate analysis based prediction of gross calorific value of coals: a comparison of support vector machine, alternating conditional expectation and artificial neural network. Fuel Process. Technol. 129, 120–129 (2015)

    Article  Google Scholar 

  48. Bonakdari, H.; Zaji, A.H.: Open channel junction velocity prediction by using a hybridself-neuron adjustable artificial neural network. Flow Meas. Instrum. 49, 46–51 (2016)

    Article  Google Scholar 

  49. Çolak, A.B.: An experimental study on the comparative analysis of the effect of the number of data on the error rates of artificial neural networks. Int. J. Energy Res. 45(1), 478–500 (2021)

    Article  Google Scholar 

  50. Esmaeilzadeh, F.; Teja, A.S.; Bakhtyari, A.: The thermal conductivity, viscosity, andcloud points of bentonite nanofluids with n-pentadecane as the base fluid. J. Mol. Liq. 300, 112307 (2020)

    Article  Google Scholar 

  51. Barati-Harooni, A.; Najafi-Marghmaleki, A.: An accurate RBF-NN model for estimation of viscosity of nanofluids. J. Mol. Liq. 224, 580–588 (2016)

    Article  Google Scholar 

  52. Rostamian, S.H.; Biglari, M.; Saedodin, S.; Esfe, M.H.: An inspection of thermal conductivity of CuO-SWCNTs hybrid nanofluid versus temperature and concentration using experimental data: ANN modeling and new correlation. J. Mol. Liq. 231, 364–369 (2017)

    Article  Google Scholar 

  53. Ali, A.; Abdulrahman, A.; Garg, S.; Maqsood, K.; Murshid, G.: Application of artificial neural networks (ANN) for vapor-liquid-solid equilibrium prediction for CH4–CO2 binary mixture. Greenh. Gases 9, 67–78 (2019)

    Article  Google Scholar 

  54. Çolak, A.B.: Experimental study for thermal conductivity of water-based zirconium oxide nanofluid: developing optimal artificial neural network and proposing new correlation. Int. J. Energy Res. 45(2), 2912–2930 (2020)

    Article  Google Scholar 

  55. Abdul Kareem, F.A.; Shariff, A.M.; Ullah, S.; Garg, S.; Dreisbach, F.; Keong, L.K.; Mellon, N.: Experimental and neural network modeling of partial uptake for a carbon dioxide/methane/water ternary mixture on 13X zeolite. Energy Technol. 5, 1373–1391 (2017)

    Article  Google Scholar 

  56. Vafaei, M.; Afrand, M.; Sina, N.; Kalbasi, R.; Sourani, F.; Teimouri, H.: Evaluation of thermal conductivity of MgO-MWCNTs/EG hybrid nanofluids based on experimental data by selecting optimal artificial neural networks. Physica E 85, 90–96 (2017)

    Article  Google Scholar 

  57. Akhgar, A.; et al.: Developing dissimilar artificial neural networks (ANNs) to prediction the thermal conductivity of MWCNT-TiO2/water-ethylene glycolhybrid nanofluid. Powder Technol. 355, 602–610 (2019)

    Article  Google Scholar 

  58. Çolak, A.B.: Developing optimal artificial neural network (ANN) to predict the specific heat of water based yttrium oxide (Y2O3) nanofluid according to the experimental data and proposing new correlation. Heat Transf. Res. 51(17), 1565–1586 (2020). https://doi.org/10.1615/HeatTransRes.2020034724

    Article  Google Scholar 

  59. Güzel, T.; Çolak, A.B.: Artificial intelligence approach on predicting current values of polymer interface Schottky diode based on temperature and voltage: An experimental study. Superlattices Microstruct. 153, 106864 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anum Shafiq or Andaç Batur Çolak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafiq, A., Çolak, A.B. & Sindhu, T.N. Modeling of Soret and Dufour’s Convective Heat Transfer in Nanofluid Flow Through a Moving Needle with Artificial Neural Network. Arab J Sci Eng 48, 2807–2820 (2023). https://doi.org/10.1007/s13369-022-06945-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06945-9

Keywords

Navigation