Skip to main content
Log in

Microstructure and Mechanical Properties of Hadfield Steel Matrix Composite Reinforced with Dispersed High Chromium Cast Iron

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In this paper, the Hadfield steel matrix composite reinforced with dispersed high chromium cast iron (HCCI) was prepared by using the hot-rolling forming method. The microstructure and mechanical properties of the bimetal composites were analyzed. The experimental results showed that the brittle HCCI was necked and broken into uneven blocks or particles after hot-rolling deformation. The fractured hard HCCI was encased in Hadfield steel to form HCCI-reinforced Hadfield steel composite. Hot rolling results in good metallurgical bonding of the two metals, and Mn, Cr, Fe and Si elements were diffused at the interface. The wear property of the composite was higher than that of Hadfield steel. The hard HCCI played an important role in protecting the Hadfield steel matrix from wearing. The average impact toughness of the composite reached 38.2 J cm−2. The impact property of the composite was between Hadfield steel and HCCI, but significantly higher than that of as-cast iron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Xu L, Wang F, Lu F, Zhou Y, Chen C, and Wei S, Wear 476 (2021) 203655. https://doi.org/10.1016/j.wear.2021.203655

    Article  CAS  Google Scholar 

  2. Jain A S, Chang H W, Tang X H, and Hinckley B, J Mater Sci 56 (2021) 1. https://doi.org/10.1007/s10853-020-05260-8

    Article  CAS  Google Scholar 

  3. Atabaki M M, Jafari S, and Abdollah-pour H, J Iron Steel Res Int 19 (2012) 43. https://doi.org/10.1016/S1006-706X(12)60086-7

    Article  CAS  Google Scholar 

  4. Rajicic B, Maslarevic A, Bakic G M, and Maksimovic V, Trans Indian Inst Metals 76 (2023) 1427. https://doi.org/10.1007/s12666-022-02860-7

    Article  Google Scholar 

  5. Zhi X H, Xing J D, Fu H G, and Gao Y M, Mater Charact 59 (2008) 1221. https://doi.org/10.1016/j.matchar.2007.10.010

    Article  CAS  Google Scholar 

  6. Cui J, Guo L, Lu H, and Li D Y, Wear 376 (2017) 587. https://doi.org/10.1016/j.wear.2016.12.031

    Article  CAS  Google Scholar 

  7. Elghazaly W, Rashad R, Elmohr S, and Elghazaly S, Adv Mater Sci Eng 7 (2016) 1. https://doi.org/10.1155/2016/1203756

    Article  CAS  Google Scholar 

  8. Gao X J, Jiang Z Y, Wei D B, and Kosasih B, Tribol Int 92 (2015) 117. https://doi.org/10.1016/j.triboint.2015.06.002

    Article  CAS  Google Scholar 

  9. Chen C, et al., Tribol Int 121 (2018) 359. https://doi.org/10.1016/j.triboint.2018.01.044

    Article  CAS  Google Scholar 

  10. Chen C, Lv B, Feng X Y, Zhang F C, and Beladi H, Mater Sci Eng A 729 (2018) 178. https://doi.org/10.1016/j.msea.2018.05.059

    Article  CAS  Google Scholar 

  11. Zhang F C, Lv B, Wang T S, and Zheng C L, Mater Sci Technol 26 (2010) 223. https://doi.org/10.1179/174328408X363263

    Article  CAS  Google Scholar 

  12. Niu L B, Hojamberdiev M, Xu Y H, and Hong W, J Mater Sci 45 (2010) 4532. https://doi.org/10.1007/s10853-010-4549-6

    Article  CAS  Google Scholar 

  13. Ding Y, Cao R, and Yan Y J, Mater. Sci. Eng. A 773 (2020) 138727. https://doi.org/10.1016/j.msea.2019.138727

    Article  CAS  Google Scholar 

  14. Huang M, Xu C, Fan G, Maawad E, Gan W, Geng L, Lin F, Tang G, Wu H, Du Y, and Li D, Acta Mater. 153 (2018) 235. https://doi.org/10.1016/j.actamat.2018.05.005

    Article  CAS  Google Scholar 

  15. Mozaffari A, Danesh Manesh H, and Janghorban K, J Alloys Compd 489 (2010) 103. https://doi.org/10.1016/j.jallcom.2009.09.022

    Article  CAS  Google Scholar 

  16. Azimi M, Toroghinejad M R, Shamanian M, and Kestens L A I, J Mater Sci 53 (2018) 12553. https://doi.org/10.1007/s10853-018-2510-2

    Article  CAS  Google Scholar 

  17. Liu F, Jiang Y H, Han X, and Tan J, J Alloys Compd 618 (2015) 380. https://doi.org/10.1016/j.jallcom.2014.07.131

    Article  CAS  Google Scholar 

  18. Li J S, Cheng G J, Yen H W, Yang Y L, Chang H Y, Wu C Y, Wang S H, and Yang J R, Mater Chem Phys 246 (2020) 122815. https://doi.org/10.1016/j.matchemphys.2020.122815

    Article  CAS  Google Scholar 

  19. Li X, Sun Y H, Wang Z Q, and Jiang F C, J Alloys Compd 774 (2019) 656. https://doi.org/10.1016/j.jallcom.2018.10.074

    Article  CAS  Google Scholar 

  20. Akdemir A, Kus R, and Simsir M, Mater Sci Eng A 516 (2009) 119. https://doi.org/10.1016/j.msea.2009.03.006

    Article  CAS  Google Scholar 

  21. Avcı A, İlkaya N, Şimşir M, and Akdemir A, J Mater Process Technol 209 (2009) 1410. https://doi.org/10.1016/j.jmatprotec.2008.03.052

    Article  CAS  Google Scholar 

  22. Huang T X, Li Z, Huang Y Q, Li Y, and Xiao P, Ceram Int 46 (2019) 2592. https://doi.org/10.1016/j.ceramint.2019.08.217

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the Key scientific research projects of colleges and universities of Henan province (No. 24B430003), the Henan Science and Technology Plan Project (No. 232102230060) and the Doctoral Research Start-Up Fund of the Anyang Institute of Technology (No. BSJ2023003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guofeng Yuan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Yuan, G., Zhao, F. et al. Microstructure and Mechanical Properties of Hadfield Steel Matrix Composite Reinforced with Dispersed High Chromium Cast Iron. Trans Indian Inst Met (2024). https://doi.org/10.1007/s12666-024-03332-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12666-024-03332-w

Keywords

Navigation