Skip to main content
Log in

Structural Evolution in Mechanically Alloyed and Spark Plasma Sintered Iron–0.15 wt.% MWCNT Composite

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

High-energy ball milling (HEBM) of mixtures of iron powder and multi-walled carbon nanotube (MWCNT) has been performed in an attempt to synthesize nano-grained steel. Even after exposure to a harsh HEBM conditions, the MWCNTs are seen to have retained their structural identity, and therefore, an MWCNT-reinforced steel matrix composite could be finally produced. Moreover, the study has revealed that the minor addition of copper leads to a significant reduction in grain size of ferrite in the so-produced steel matrix–MWCNT composite. It is also noticed that the fine grain structure of ferrite remains intact even after consolidation of the powder composite by spark plasma sintering, followed by hot forging. The micro-hardness values obtained for the composites (with/without copper) are observed as comparable with the submicron-grained steels, so far reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Rashad, F. Pan, A. Tang, and M. Asif, Effect of Graphene Nanoplatelets Addition on Mechanical Properties of Pure Aluminum Using a Semi-Powder Method, Prog. Nat. Sci. Mater. Int., 2014, 24, p 101–108

    Article  Google Scholar 

  2. M. Rashad, F. Pan, Z. Yu, M. Asif, H. Lin, and R. Pan, Investigation on Microstructural, Mechanical and Electrochemical Properties of Aluminum Composites Reinforced with Graphene Nanoplatelets, Prog. Nat. Sci. Mater. Int., 2015, 25, p 460–470

    Article  Google Scholar 

  3. E.T. Thostenson, Z. Rez, and T.-W. Chou, Advances in the Science and Technology of Carbon Nanotubes and Their Composites: A Review, Compos. Sci. Technol., 2001, 61, p 1899–1912

    Article  Google Scholar 

  4. W. Zhou, T. Yamaguchi, K. Kikuchi, N. Nomura, and A. Kawasaki, Effectively Enhanced Load Transfer by Interfacial Reactions in Multi-Walled Carbon Nanotube Reinforced Al Matrix Composites, Acta Mater., 2017, 125, p 369–376

    Article  Google Scholar 

  5. A. Kumar, M.K. Banerjee, and U. Pandel, Development of a Novel MWCNT Reinforced Iron Matrix Nanocomposite Through Powder Metallurgy Route, Powder Technol., 2018, 331, p 41–51

    Article  Google Scholar 

  6. N. Silvestre, State-of-the-art Review on Carbon Nanotube Reinforced Metal Matrix Composites, Int. J. Compos. Mater., 2013, 3(6A), p 28–44

    Google Scholar 

  7. K.S. Munir, Y. Li, M. Qian, and C. Wen, Identifying and Understanding the Effect of Milling Energy on the Synthesis of Carbon Nanotubes Reinforced Titanium Metal Matrix Composites, Carbon, 2016, 99, p 384–397

    Article  Google Scholar 

  8. B. Chen, J. Shen, X. Ye, H. Imai, J. Umeda, M. Takahashi, and K. Kondoh, Solid-State Interfacial Reaction and Load Transfer Efficiency in Carbon Nanotubes (CNTs)-Reinforced Aluminum Matrix Composites, Carbon, 2017, 114, p 198–208

    Article  Google Scholar 

  9. A. Singh, T.R. Prabhu, A.R. Sanjay, and V. Koti, An Overview of Processing and Properties of CU/CNT Nano Composites, Mater. Today Proc., 2017, 4, p 3872–3881

    Article  Google Scholar 

  10. N. Nayan, A.K. Shukla, P. Chandran, S.R. Bakshi, S.V.S.N. Murty, B. Pant, and P.V. Venkitakrishnan, Processing and Characterization of Spark Plasma Sintered Copper/Carbon Nanotube Composites, Mater. Sci. Eng., A, 2017, 682(229-237), p 229–237

    Article  Google Scholar 

  11. T. Varol and A. Canakci, Effect of the CNT Content on Microstructure, Physical and Mechanical Properties of Cu-Based Electrical Contact Materials Produced by Flake Powder Metallurgy, Arab. J. Sci. Eng., 2015. http://doi.org/10.1007/s13369-015-1734-6

  12. A.M.K. Esawi and M.M. Farag, Carbon Nanotube Reinforced Composites: Potential and Current Challenges, Mater. Des., 2007, 28, p 2394–2401

    Article  Google Scholar 

  13. S.R. Bakshi, D. Lahiri, and A. Agarwal, Carbon Nanotube Reinforced Metal Matrix Composites—A Review, Int. Mater. Rev., 2010, 55, p 41–64

    Article  Google Scholar 

  14. I. Lahiri and S. Bhargava, Compaction and Sintering Response of Mechanically Alloyed Cu–Cr Powder, Powder Technol., 2009, 189, p 395–528

    Article  Google Scholar 

  15. T. Kuzumaki, O. Ujiie, H. Ichinose, and K. Ito, Mechanical Characteristics and Preparation of Carbon Nanotube Fiber-Reinforced Ti Composite, Adv. Eng. Mater., 2000, 2, p 416–418

    Article  Google Scholar 

  16. R.P. Bustamante, I.E. Guel, W.A. Flores, M.M. Yoshida, P.J. Ferreira, and R.M. Sánchez, Novel Al-Matrix Nanocomposites Reinforced with Multi-Walled Carbon Nanotube, J. Alloys Compd., 2008, 450, p 323–326

    Article  Google Scholar 

  17. W.J. Kim and S.H. Lee, High Temperature Deformation Behavior of Carbon Nanotube (CNT)-Reinforced Aluminum Composites and Prediction of Their High-Temperature Strength, Compos. A, 2014, 67, p 308–315

    Article  Google Scholar 

  18. A. Kumar, U. Pandel, and M.K. Banerjee, Effect of High Energy Ball Milling on the Structure of Iron—Multiwall Carbon Nanotubes (MWCNT) Composite, Adv. Mater. Res., 2017, 6, p 245–255

    Google Scholar 

  19. C. Edtmaier, E. Wallnoefer, A. Koeck, in Proceedings of PM 2004, Vienna, Austria, 2004

  20. Z. Tao, H. Geng, K. Yu, Z. Yang, and Y. Wang, Effect of High-Energy Ball Milling on the Morphology and the Field Emission Property of Multi-Walled Carbon Nanotubes, Mater. Lett., 2004, 58, p 3410–3413

    Article  Google Scholar 

  21. C.F. Deng, D.Z. Wang, X.X. Zhang, and A.B. Li, Processing and Properties of Carbon Nanotubes Reinforced Aluminum Composites, Mater. Sci. Eng., A, 2007, 444, p 138–145

    Article  Google Scholar 

  22. S. Praveen, B.S. Murty, and R.S. Kottada, Alloying Behavior in Multi-Component AlCoCrCuFe and NiCoCrCuFe High Entropy Alloys, Mater. Sci. Eng., A, 2012, 534, p 83–89

    Article  Google Scholar 

  23. K.S. Munir, M. Qian, Y. Li, D.T. Oldfield, P. Kingshott, D.M. Zhu, and C. Wen, Quantitative Analyses of MWCNT-Ti Powder Mixtures Using Raman Spectroscopy: The Influence of Milling Parameters on Nanostructural Evolution, Adv. Eng. Mater., 2015, 17, p 1660–1669

    Article  Google Scholar 

  24. S. Simões, F. Viana, M.A.L. Reis, and M.F. Vieira, Improved Dispersion of Carbon Nanotubes in Aluminum Nanocomposites, Compos. Struct., 2014, 108, p 992–1000

    Article  Google Scholar 

  25. A.A. Tohidi, M. Ketabchi, and A. Hasannia, Nanograined Ti–Nb Microalloy Steel Achieved by Accumulative Roll Bonding (ARB) Process, Mater. Sci. Eng., A, 2013, 577, p 43–47

    Article  Google Scholar 

  26. Y. Fukuda, K. Oh-ishi, Z. Horita, and T.G. Langdon, Processing of a Low-Carbon Steel by Equal Channel Angular Pressing, Acta Mater., 2002, 50, p 1359–1368

    Article  Google Scholar 

  27. F. Saba, S.A. Sajjadi, M.H. Sabzevar, and F. Zhang, Formation Mechanism of Nano Titanium Carbide on Multi-Walled Carbon Nanotube and Influence of the Nanocarbides on the Load-Bearing Contribution of the Nanotubes Inner-Walls in Aluminum-Matrix Composites, Carbon, 2017, 115, p 720–729

    Article  Google Scholar 

  28. M. Barzegar and A.A. Vishlaghi, Investigation on Solid Solubility and Physical Properties of Cu–Fe/CNT Nano-Composite Prepared via Mechanical Alloying Route, J. Ultrafine Grained Nanostruct. Mater., 2014, 47, p 37–42

    Google Scholar 

  29. P. Delhaes, M. Couzi, M. Trinquecoste, J. Dentzer, H. Hamidou, and C. Vix-Guterl, A Comparison Between Raman Spectroscopy and Surface Characterizations of Multiwall Carbon Nanotubes, Carbon, 2006, 44, p 3005–3013

    Article  Google Scholar 

  30. J.H. Lehman, M. Terrones, E. Mansfield, K.E. Hurst, and V. Meunier, Evaluating the Characteristics of Multiwall Carbon Nanotubes, Carbon, 2011, 49, p 2581–2602

    Article  Google Scholar 

  31. N.S. Anas, R.K. Dash, T.N. Rao, and R. Vijay, Effect of Carbon Nanotubes as Reinforcement on the Mechanical Properties of Aluminum-Copper-Magnesium Alloy, J. Mater. Eng. Perform., 2017, 26(7), p 3376–3386

    Article  Google Scholar 

  32. L. Wu, R. Wu, L. Hou, J. Zhang, J. Sun, and M. Zhang, Microstructure and Mechanical Properties of CNT-Reinforced AZ31 Matrix Composites Prepared Using Hot-Press Sintering, J. Mater. Eng. Perform., 2017, 26(11), p 5495–5500

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Materials Research Centre (Malaviya National Institute of Technology, Jaipur, India) for providing the characterization facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Banerjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, P., Kumar, A. & Banerjee, M.K. Structural Evolution in Mechanically Alloyed and Spark Plasma Sintered Iron–0.15 wt.% MWCNT Composite. J. of Materi Eng and Perform 27, 4740–4748 (2018). https://doi.org/10.1007/s11665-018-3547-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3547-8

Keywords

Navigation