Skip to main content
Log in

Fundamental Aspects of Dissolution of Lime into Steelmaking Slags

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

A fundamental analysis is presented to describe the dissolution behavior of lime (CaO) in FeO-containing slags. FeO present in steelmaking slag is seen to penetrate preferentially into the lime particle and form a (CaO–FeO) layer around it, thereby a pathway for outward diffusion of CaO into the slag and subsequent formation of dicalcium silicate. In the present work, the lime dissolution behavior is described in terms of the chemical potential gradient of CaO between the lime particle and slag. The chemical potential gradient is more fundamental for calculating fluxes in concentrated melts in which the activities are far from ideal, which has been ignored by previous researchers. The model developed in the present work is used to compare the mass transfer coefficients for a variety of experimental conditions. In addition, other factors affecting the dissolution are lime particle morphology, activity of silica in slag, slag viscosity, temperature and turbulence in slag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Matsushima M, Yadoomaru S, Mori K, and Kawai Y, Trans ISIJ 17 (1977) 442.

    Article  CAS  Google Scholar 

  2. Natalie C A, and Evans J W, Ironmak Steelmak, 3 (1979) 101.

    Google Scholar 

  3. Williams P, Sunderland M, and Briggs G, Ironmak Steelmak, 9 (1982) 150.

    Google Scholar 

  4. Hamano T, Horibe M, and Ito K, ISIJ Int. 44 (2004) 263. https://doi.org/10.2355/isijinternational.44.263

    Article  CAS  Google Scholar 

  5. Amini S, Brungs M, and Ostrovski O, ISIJ Int 47 (2007) 32. https://doi.org/10.2355/isijinternational.47.32

    Article  CAS  Google Scholar 

  6. Amini S, Dissolution Rate and Diffusivity of Lime in Steelmaking Slag and Development of Fluoride-Free Fluxes, Ph.D. thesis, The University of New South Wales, (2005)

  7. Martinsson J, Glaser B, and Sichen D, Metall Mater Trans B 49 (2018) 3164. https://doi.org/10.1007/s11663-018-1421-6

    Article  CAS  Google Scholar 

  8. Asai S, and Muchi I, Trans ISIJ 10 (1970) 250.

    Article  Google Scholar 

  9. Dogan N, Brooks G, and Rhamdhani M A, Kinetics of Flux Dissolution in Oxygen Steelmaking. ISIJ Int 49 (2009) 1474. https://doi.org/10.2355/isijinternational.49.1474

    Article  CAS  Google Scholar 

  10. Vieira L M, de Oliveira H C C, Telles V B, Junca E, Vieira E A, and de Oliveira J R, J Mater Res Technol 9 (2020) 14878. https://doi.org/10.1016/j.jmrt.2020.10.058

    Article  CAS  Google Scholar 

  11. Sarkar R, Roy U, and Ghosh D, Metall Mater Trans B Process Metall Mater Process Sci 47 (2016) 2651. https://doi.org/10.1007/s11663-016-0659-0

    Article  CAS  Google Scholar 

  12. Deo B, Gupta PK, Malathi M, Koopmans P, Overbosch A, Boom R, in 5th European Oxygen Steelmaking Congress (2006), p 202.

  13. Maruoka N, Ishikawa A, Shibata H, and Kitamura S, High Temp Mater Process 32 (2013) 15. https://doi.org/10.1515/htmp-2012-0049

    Article  CAS  Google Scholar 

  14. Deng T, and Sichen D, Metall. Mater. Trans. B 43 (2012) 578. https://doi.org/10.1007/s11663-011-9629-8

    Article  CAS  Google Scholar 

  15. Noguchi F, Ueda Y, Yanagase T, in Jt. MMIJ-AIME Meet. Proc. World Min. Met. Technol. (1976), p. 685

  16. Hamano T, Fukagai S, and Tsukihashi F, ISIJ Int 46 (2006) 490.

    Article  CAS  Google Scholar 

  17. Deng T, Study on the Dissolution of Lime and Dolomite in Converter Slag, Royal Institute of Technology (KTH) (2012)

  18. Deo B, Jajee R, in The 3rd International Conference in Science and Technology of Iron and Steelmaking (2017), p 123

  19. Hachtel L, Fix W, and Tromel G, Arch fur das Eisenhuttenwes 45 (1974) 575.

    Article  Google Scholar 

  20. Sunayama H, Kawahara M, Kozuka T, Mitsuo T, Mizukami Y, in Proc. 5th Int. Conf. Molten slags, fluxes salts ’97 (1997), p 613

  21. Jajee R, Kinetics of MgO and CaO Dissolution in Steelmaking Slags, M.Tech. thesis, IIT Bhubhaneswar, 2017.

  22. Kowalski M, Spencer P J, and Neuschitz D, Phase Diagrams in Slag Atlas, Verlag Stahleisen GmbH, Dusseldorf (1995).

    Google Scholar 

  23. Kitamura S, Shibata H, and Maruoka N, Steel Res Int 79 (8), (2008) 586.

    Article  CAS  Google Scholar 

  24. Deo B, Halder J, Snoeijer B, Overbosch A, and Boom R, Ironmak Steelmak 32 (1), (2005) 54–60. https://doi.org/10.1179/174328105X23969

    Article  CAS  Google Scholar 

  25. Deo B, Karamcheti A, Paul A, Singh P, and Chhabra R P, ISIJ Int 36 (6), (1996) 658–666. https://doi.org/10.2355/isijinternational.36.658

    Article  CAS  Google Scholar 

  26. Deo B, Overbosch A, Snoeijer B, Das D, and Srinivas K, Trans Indian Inst Met 66 (5–6), (2013) 543–554. https://doi.org/10.1007/s12666-013-0306-2

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ameya Kadrolkar.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

A. Sample Calculation of Mass Transfer Coefficient for the Case of Martinsson et al.’s [7] Slag B

  1. (i)

    Solution of mass flux equation

The unknown in Eq. (1) is \({X}_{\rm D}\) i.e. the interfacial mole fraction of CaO at the (CaO⋅FeO) layer and the bulk slag interface. On substituting Eqs. (2) and (3) into Eq. (1), we get the following equation,

$$\frac{{k}_{1}{A}_{1}{\rho }_{\rm{layer}}\left({X}_{\rm A}-{X}_{\rm B}\right)}{{M}_{\rm{layer}}}{\left(1+\frac{\partial \ln{\gamma }_{\rm{CaO}}}{\partial \ln{X}_{\rm{CaO}}}\right)}_{\rm{(CaO-FeO)}_{\rm layer}}=\frac{{k}_{2}{A}_{p}{\rho }_{\rm{slag}}\left({X}_{\rm D}-{X}_{\rm E}\right)}{{M}_{\rm{slag}}}{\left(1+\frac{\partial \ln{\gamma }_{\rm{CaO}}}{\partial \ln{X}_{\rm{CaO}}}\right)}_{\rm{liquid-slag}}$$
(A.1)

For the solution: a particular value of \({k}_{2}\) and \(L=\frac{{k}_{1}{A}_{1}}{{k}_{2}{A}_{p}}\) is selected and taking \({k}_{2}\) = 6.5e−6 m/s, \(L\) = 1.6 and substituting the above-calculated values into Eq. (A.1), and the values of molecular weight \(M\) and density \(\rho\) of (CaO⋅FeO) layer and the bulk slag, the value of interfacial value \({X}_{\rm D}\) for the first step, is found to be 0.69.

The moles of CaO dissolved at a given time step, \({J}_{\rm{dissolved}}\) can then be calculated as, from

$${J}_{\rm DE}={J}_{\rm{dissolved}}=\frac{{k}_{2}{A}_{p}{\rho }_{\rm{slag}}\left({X}_{\rm D}-{X}_{\rm E}\right)}{{M}_{\rm{slag}}}{\left(1+\frac{\partial \ln{\gamma }_{\rm{CaO}}}{\partial \ln{X}_{\rm{CaO}}}\right)}_{\rm{liquid-slag}} ={J}_{{C}_{2}S}+{J}_{\rm{CaO-(liquid-slag)}}$$
(A.2)

The dissolved CaO is distributed between disilicate (\(\text{C}_{2}\text{S}\)) and liquid slag and is found by evaluating the ratio, \(\frac{{J}_{\text{C}_{2}\text{S}}}{{J}_{\rm{{CaO-(liquid-slag)}}}}=\frac{BC}{AC}\) as described earlier.

The weight of the liquid slag, \({W}_{\rm{liq-slag}}\) at time ‘t’ is updated based on the relative distribution of CaO between disilicate (\({\rm C}_{2}{\rm{S}}\)) and liquid slag.

$${\left({W}_{\rm{liq-slag}}\right)}_{t}={\left({W}_{\rm{liq-slag}}\right)}_{t-1}+{\left(\frac{{{J}_{\rm{CaO-(liquid-slag)}}*M}_{\rm{CaO}}}{1000}\right)}_{t-1}-{\left(\frac{{J}_{{\rm{C}}_{2}\rm{S}}*{M}_{\rm{Si{O}}_{2}}}{1000}\right)}_{t-1},\left(\rm{kg}\right)$$
(A.3)

From the new mass of liquid slag, the new composition of slag is evaluated.

The new mass % of lime particle can be calculated by subtracting the molar flux of CaO (\({J}_{\rm DE}\).

$${\left({W}_{\rm{lime-particle}}\right)}_{t}={\left({W}_{\rm{lime-particle}}\right)}_{t-1}-{\left(\frac{{{J}_{\rm DE}*M}_{\rm{CaO}}}{1000}\right)}_{t-1}$$
(A.4)

From the new mass of slag, the new dimensions are evaluated (here it is assumed that the shape of particle remains constant through the duration of experiment, which actually may not be true). The calculations are repeated by considering new mass of lime particle and slag and new composition of slag.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadrolkar, A., Overbosch, A., Koopmans, P. et al. Fundamental Aspects of Dissolution of Lime into Steelmaking Slags. Trans Indian Inst Met (2024). https://doi.org/10.1007/s12666-024-03322-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12666-024-03322-y

Keywords

Navigation