Skip to main content
Log in

Tribological Behaviour of Austenitic Stainless Steel-Clad Surface Over Low Carbon Steel Produced by Cold Metal Transfer Welding Process

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Low carbon steel has become an in-demand material in various industrial applications due to its versatility and cost-effectiveness. Despite its unparalleled advantages, it cannot be utilized in wear-resistant applications without surface alteration, which can be achieved by cladding stainless steel over low carbon steel. This study aims to clad 308L stainless steel over a low carbon steel plate using the cold metal transfer (CMT) welding process at different welding speeds (3, 4, 5, and 6 mm/sec). A ball-on-disc reciprocating tribometer was used to examine the wear characteristics of the cladding surface by varying the normal loads (30N, 40N and 50N) and frequencies (5 Hz, 10 Hz and 15 Hz). The wear resistance of the cladding surface is enhanced by 30–40% compared to a base material. Results show that the wear rate varies with the applied load and frequency. Due to the metastability of austenitic stainless steel during plastic deformation, the austenite changes into martensite. The cladding and worn-out surfaces were examined through optical and field emission scanning electron microscopy (FESEM) to study the wear mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lu P, and Wood R J, Surf. Topogr. Metrol. Prop. 8 (2020) 043001. https://doi.org/10.1088/2051-672X/abb6d0

    Article  ADS  CAS  Google Scholar 

  2. Yin M, Yin H, and Long J, Surf. Topogr: Metrol. Prop. 10 (2022) 025022. https://doi.org/10.1088/2051-672X/ac5f67

    Article  ADS  Google Scholar 

  3. Kirchgaßner M, Badisch E, and Franek F, Wear 265 (2008) 772. https://doi.org/10.1016/j.wear.2008.01.004

    Article  CAS  Google Scholar 

  4. Gualco A, Svoboda H G, Surian E S, and de Vedia L A, Mater. Des. 31 (2010) 4165. https://doi.org/10.1016/j.matdes.2010.04.026

    Article  CAS  Google Scholar 

  5. Chatterjee S, and Pal T K, Wear 255 (2003) 417. https://doi.org/10.1016/S0043-1648(03)00101-7

    Article  CAS  Google Scholar 

  6. Mendez P F, Barnes N, Bell K, Borle S D, Gajapathi S S, Guest S D, Izadi H, Gol A K, and Wood G, J. Manuf. Process. 16 (2014) 4. https://doi.org/10.1016/j.jmapro.2013.06.011

    Article  Google Scholar 

  7. Lee J W, Nishio K, Katoh M, Yamaguchi T, and Mishima K, World 49 (2005) 94. https://doi.org/10.1007/BF03266493

    Article  CAS  Google Scholar 

  8. Shahi A S, and Pandey S, J. Mater. Process. Technol. 196 (2008) 339. https://doi.org/10.1016/j.jmatprotec.2007.05

    Article  CAS  Google Scholar 

  9. Chen J H, Hsieh C C, Hua P S, Chang C M, Lin C M, Wu P T Y, and Wu W, Met. Mater. Int. 19 (2013) 93. https://doi.org/10.1007/s12540-013-1015-4

    Article  CAS  Google Scholar 

  10. Palani P K, and Murugan N, J. Adv. Manuf. Technol. 30 (2006) 669. https://doi.org/10.1007/s00170-005-0101-2

    Article  Google Scholar 

  11. Kiran V B, Krishna M, Natraj J R, and Kumar S, Int. J. Eng. Technol. 4 (2012) 18.

    Article  CAS  Google Scholar 

  12. Koli Y, Yuvaraj N, and Aravindan S, Mater. Res. Express 6 (2020) 1265e5. https://doi.org/10.1088/2053-1591/ab61b6

    Article  CAS  Google Scholar 

  13. Song R B, Xiang J Y, and Hou D P, J. Iron Steel Res. Int. 18 (2011) 53. https://doi.org/10.1016/S1006-706X(11)60117-9

    Article  CAS  Google Scholar 

  14. Xie F, He X, Cao S, and Qu X, J. Mater. Process. Technol. 213 (2013) 838. https://doi.org/10.1016/j.jmatprotec.2012.12.014

    Article  CAS  Google Scholar 

  15. Farias M C M, Souza R M D, Sinatora A, and Tanaka D K, Wear 263 (2007) 773. https://doi.org/10.1016/j.wear.2006.12.017

    Article  CAS  Google Scholar 

  16. Lo K H, Shek C H, and Lai J K L, Mater. Sci. Eng. R Rep. 65 (2009) 39.

    Article  Google Scholar 

  17. Wang Y, Yue W, Kang J, Zhu L, Fu Z, and Wang C, J. Tribol. 141 (2019) 042102. https://doi.org/10.1115/1.4042392

    Article  CAS  Google Scholar 

  18. Kennedy F E, Ye Y, Baker I, White R R, Barry R L, Tang A Y, and Song M, Wear 496 (2022) 204309. https://doi.org/10.1016/j.wear.2022.204309

    Article  CAS  Google Scholar 

  19. Rajeev G P, Kamaraj M, and Bakshi S R, Surf. Coat. Technol. 375 (2019) 383. https://doi.org/10.1016/j.surfcoat.2019.07.019

    Article  CAS  Google Scholar 

  20. Evangeline A, and Sathiya P, Mater. Res. Express 6 (2019) 066516. https://doi.org/10.1088/2053-1591/ab0a10

    Article  ADS  CAS  Google Scholar 

  21. Guo C, Chen J, Zhou J, Zhao J, Wang L, Yu Y, and Zhou H, Surf. Coat. Technol. 206 (2011) 2064. https://doi.org/10.1016/j.surfcoat.2011.06.005

    Article  CAS  Google Scholar 

  22. Pereira J, Zambrano J, Licausi M, Tobar M, and Amigo V, Wear 330 (2015) 280. https://doi.org/10.1016/j.wear.2015.01.048

    Article  CAS  Google Scholar 

  23. Peruzzo M, Serafini F L, Ordoñez M F C, Souza R M, and Farias M C M, Wear 422 (2019) 108. https://doi.org/10.1016/j.wear.2019.01.027

    Article  CAS  Google Scholar 

  24. Davanageri M, Narendranath S, and Kadoli R, Arch. Foundry Eng. 16 (2016) 47.

    Article  CAS  Google Scholar 

  25. Jiang J, and Arnell R D, Wear 217 (1998) 190. https://doi.org/10.1016/S0043-1648(98)00178-1

    Article  CAS  Google Scholar 

  26. Rajeev V R, Dwivedi D K, and Jain S C, Tribol Int. 43 (2010) 1532. https://doi.org/10.1016/j.triboint.2010.02.014

    Article  CAS  Google Scholar 

  27. Koli Y, Aravindan S, and Rao P V, J. Tribol. 145 (2023) 031706. https://doi.org/10.1115/1.4056191

    Article  CAS  Google Scholar 

  28. Nuruzzaman D M, and Chowdhury M A, Int. J. Surf. Eng. (IJSEIMS) 1 (2013) 33. https://doi.org/10.4018/ijseims.2013010103

    Article  Google Scholar 

  29. Straffelini G, Molinari A, and Trabucco D, Metall. Mater. Trans. A 33 (2002) 613. https://doi.org/10.1007/s11661-002-0123-4

    Article  Google Scholar 

  30. Marshall P, Austenitic stainless steels: microstructure and mechanical properties, (1984).

  31. Bartolomeu F, Buciumeanu M, Pinto E, Alves N, Carvalho O, Silva F S, and Miranda G, Addit. Manuf. 16 (2017) 81. https://doi.org/10.1016/j.addma.2017.05.007

    Article  CAS  Google Scholar 

  32. Samandi M, Shedden B A, Smith D I, Collins G A, Hutchings R, and Tendys J, Surf. Coat. Technol. 59 (1993) 261. https://doi.org/10.1016/0257-8972(93)90094-5

    Article  CAS  Google Scholar 

  33. Roy J G, and Yuvaraj N, Trans. Ind. Ins. of Met. 74 (2021) 2397. https://doi.org/10.1007/s12666-021-02326-2

    Article  Google Scholar 

  34. Lippold J C, and Savage W F, Weld J 59 (1980) 48s.

    Google Scholar 

  35. Chuaiphan W, and Srijaroenpramong L, J. Mater. Process. Technol. 214 (2014) 402. https://doi.org/10.1016/j.jmatprotec.2013.09.025

    Article  CAS  Google Scholar 

  36. Rigney D A, Naylor M G S, Divakar R, and Ives L K, Mater. Sci. Eng. C 81 (1986) 409. https://doi.org/10.1063/1.4914239

    Article  Google Scholar 

  37. Selçuk B, Ipek R, and Karamış M B, J. Mater. Process. Technol. 141 (2003) 189. https://doi.org/10.1016/S0924-0136(02)01038-5

    Article  CAS  Google Scholar 

  38. Stachowiak G W, and Batchelor A W, Engineering tribologys, Butterworth-heinemann (2013).

  39. Rajkumar V, Arjunan T V, and Rajesh Kannan A, J. Braz. Soc. Mech. Sci. Eng. 42 (2020) 1. https://doi.org/10.1007/s40430-019-2092-1

    Article  CAS  Google Scholar 

  40. Bhushan B, and Kulkarni A V, Thin Solid Films 278 (1996) 49. https://doi.org/10.1016/0040-6090(95)08138-0

    Article  ADS  CAS  Google Scholar 

  41. Godse R S, Gawande S H, and Keste A A, J. Bio Tribo. Corro. 2 (2016) 1. https://doi.org/10.1007/s40735-016-0034-3

    Article  Google Scholar 

  42. Gupta M K, Demirsöz R, Korkmaz M E, and Ross N S, J. Tribol. 145 (2023) 041703. https://doi.org/10.1115/1.4056423

    Article  CAS  Google Scholar 

  43. Chowdhury M A, and Helali M M, Wear 262 (2007) 198. https://doi.org/10.1016/j.wear.2006.05.007

    Article  CAS  Google Scholar 

  44. Stott F H, Tribol Int. 31 (1988) 61. https://doi.org/10.1016/S0301-679X(98)00008-5

    Article  Google Scholar 

  45. Smith A F, Wear 110 (1986) 151. https://doi.org/10.1016/0043-1648(86)90143-2

    Article  CAS  Google Scholar 

Download references

Funding

This research received no specific grant from public, commercial, or not-for-profit funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varsha Mishra.

Ethics declarations

Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, V., Yuvaraj, N. & Vipin Tribological Behaviour of Austenitic Stainless Steel-Clad Surface Over Low Carbon Steel Produced by Cold Metal Transfer Welding Process. Trans Indian Inst Met (2024). https://doi.org/10.1007/s12666-024-03261-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12666-024-03261-8

Keywords

Navigation